## 

## User Manual of <br> Low Voltage Frequency Converter SCMOD Series



## Forward

Thank you for using the SCMOD series of high-performance vector-controlled frequency converters from Schorch Electric!
This manual provides a clear and concise guide to the SCMOD series vector-controlled frequency converter and provides the necessary information to help users master the use of the converter. Users who use this product for the first time must read this manual carefully before using it.
If you are confused about some of the functions and how to use them, please consult our technical support staff for assistance with the Tel: 400-8880997.
Our company reserves the right to modify the manual without prior notice.

## Cautions

Always switch off the power when installing or repairing wiring;
After the power is cut off, there is still high voltage left inside the converter, do not touch the terminals and the internal circuitry of the converter at this time; wait patiently for the LED hand control panel and the power indicator to go out completely before proceeding to the next operation;
Never connect the input power supply to the output terminals $\mathrm{U}, \mathrm{V}$ and W of the frequency converter; Be sure to ground the converter grounding terminal PE correctly;

Do not put foreign objects into the frequency converter, which will affect its normal operation;
The electronic components inside the frequency converter are particularly sensitive to static electricity, so it is not allowed to touch its internal circuit at will.

## Commissioning of constant pressure water supply

Commissioning steps
Parameter initialization: $\operatorname{Set} \operatorname{PP}-01=1$, if the machine is new, this step is skipped;
Set the application parameter macro: $\mathrm{PP}-05=1$, the converter parameters automatically change to constant pressure water supply application;

Set the maximum range of the remote pressure gauge ( $\mathbf{0 - 1 0 V}$ ): e.g. 1.6 MPa . Since the range of the converter is expressed by integer, we will expand 1.6 MPa by a factor of 1000 to 1600 and store it in the PA-04, i.e. 1600 represents 1.6 MPa .
Set the given pressure: for example, set the water supply pressure to 1.0 MPa (range 1.6 MPa ).
The first method: directly press the " $\wedge$ " and " $\vee$ " keys on the operation panel to set the water supply pressure. After setting the range $\mathrm{PA}-04=1600$ as above, the water supply pressure data should be 1000 . Press the " $\wedge$ " and " $\vee$ " keys on the operation panel, and set the displayed data to 1000 to complete the pressure setting.
The second method: to set the water supply pressure through parameter PA-01, which refers to the \% of water supply pressure to Max. range, i.e. the water supply pressure ( 1.0 MPa ) / the max. range $(1.6 \mathrm{MPa}) * 100.0 \%=62.5 \%$, so to set PA. $01=62.5$.

Feedback pressure configuration:The feedback can be either a $0-10 \mathrm{~V}$ pressure sensor or a $4-20 \mathrm{~mA}$ pressure sensor (default $0-10 \mathrm{~V}$ ). The $0-10 \mathrm{~V}$ pressure sensor is connected to the VI and GND terminals and the PA- 02 function is set to 0 . The $4-20 \mathrm{~mA}$ pressure sensor is connected to the CI and GND terminals and the PA-02 function is set to 1 . The CI terminal defaults to a $0-20 \mathrm{~mA}$ signal or, in the case of a $4-20 \mathrm{~mA}$ signal, $\mathrm{P} 4-18$ needs to be set to 2.00 V .
Set the dormancy/wake-up parameters:By default, the dormancy/wake-up function is not used for the constant pressure water supply, if you want to use it, please set the following 4 parameters:
P8-49 Wake-up pressure
P8-50 Wake-up delay time
P8-51 Dormancy frequency
P8-52 Dormancy delay time
If the dormancy frequency (P8-51) is 0 , the dormancy/wake-up function is invalid, so when use the hibernation wake-up function, theP8-51 cannot be 0 .
During the operation of the converter, when the feedback pressure $>=$ the set pressure and the operating frequency is lower than the dormancy frequency ( $\mathrm{P} 8-51$ ) and the duration $>=$ the dormancy delay time (P8-52), the converter will enter the "Dormancy" state and stop automatically.
Under the "Dormancy" state, If the feedback pressure is lower than the wake-up pressure threshold (P8-49) and the duration >= the wake-up delay time (P8-50), the converter exits the "Dormancy" state and starts normal operation.

For better use of the dormancy/wake-up function, it's suggested to set theP8-49-P8-52 as following:
$\mathrm{P} 8-49=80 ; \quad \mathrm{P} 8-50=1.0 ; \quad \mathrm{P} 8-51=35.00 ; \quad \mathrm{P} 8-52=20.0$

Operation of converter with constant pressure water supply: Press the start button to start the frequency converter running at constant pressure, and press the stop button to stop the frequency converter.

## Contents

Forward ..... 2
Cautions ..... 2
Commissioning of constant pressure water supply ..... 3
Chapter I Product 0verview ..... 7

1. 1 Naming rules of frequency converter ..... 7
1.2 0verall dimensions and structure ..... 7
1.3 Standard electrical specification of frequency ..... 9
Chapter II Basic Wiring Methods ..... 12
2. 1 Wiring diagram of SCMOD low-power converter ( 18.5 kW andbelow)12
3. 2 Wiring diagram of SCMOD high-power converter ( 18.5 kW and ..... 12above)
Chapter III Operation and Display ..... 14
4. 1 Description of operation and display interface ..... 14
3.2 Function viewing and modification instructions ..... 15
5. 3 View of status parameters ..... 15
3.4 Password setting ..... 16
3.5 Self-1earning of motor parameters ..... 16
6. 6 Application parameter macro ..... 17
Chapter IV Description of Functional Parameters ..... 18
Chapter V Fault Diagnosis and Countermeasures ..... 55
Chapter VI Maintenance and Care ..... 61
7. 1 Daily maintenance ..... 61
8. 2 Regular maintenance ..... 61
9. 3 Replacement of wearing parts of frequency converter ..... 61
10. 4 Warranty of frequency converter ..... 62
Chapter VII Optional Accessories ..... 63
11. 1 Brake Assembly ..... 63
12. 2 Remote monitoring operation box ..... 64
Chapter VIII Communication Protocol ..... 65
8.1 RTU frame format: ..... 65
13. 2 Addresses of common communication parameters ..... 66

## Chapter I Product Overview

### 1.1 Naming rules of frequency converter



### 1.2 Overall dimensions and structure

1.2.1. Fig 1-2: Overall Dimension of Plastic Enclosures (wall-mounted)

1.2.2. Fig 1-3: Overall Dimension of Metal Enclosures (wall-mounted)


### 1.2.3. Fig 1-4: Overall Dimension of Metal Enclosures (stand type)



Note: Dimensions are subject to change without prior notice.

| Overall Dimension of SCMOD series Converter |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Enclosures | Converter type | Rated power (KW) | Dimension (mm) |  |  |  |  |  | Case |
|  |  |  | A | B | H | W | D | d |  |
| T1 | SCMOD-T-0.7 | 0.75 | 118 | 175 | 185 | 106 | 154 | 5 | Wall-mounted plastic enclosures |
|  | SCMOD-T-1.5 | 1.5 |  |  |  |  |  |  |  |
|  | SCMOD-T-2.2 | 2.2 |  |  |  |  |  |  |  |
| T1-1 | SCMOD-T-4 | 4.0 | 118 | 175 | 185 | 106 | 178 | 5 |  |
| T2 | SCMOD-T-5.5 | 5.5 | 160 | 235 | 248 | 148 | 175 | 6 |  |
|  | SCMOD-T-7.5 | 7.5 |  |  |  |  |  |  |  |
| T3 | SCMOD-T-11 | 11 | 220 | 305 | 510 | 205 | 198 | 6 |  |
|  | SCMOD-T-15 | 15 |  |  |  |  |  |  |  |
|  | SCMOD-T-18.5 | 18.5 |  |  |  |  |  |  |  |
| XT4 | SCMOD-T-22 | 22 | 225 | 355 | 368 | 195 | 200 | 7 | Wall-mounted metal enclosure |
|  | SCMOD-T-30 | 30 |  |  |  |  |  |  |  |
| XT5 | SCMOD-T-37 | 37 | 280 | 455 | 468 | 230 | 225 | 8 |  |
|  | SCMOD-T-45 | 45 |  |  |  |  |  |  |  |
| XT6 | SCMOD-T-55 | 55 | 300 | 585 | 620 | 245 | 285 | 9 |  |
|  | SCMOD-T-75 | 75 |  |  |  |  |  |  |  |
|  | SCMOD-T-90 | 90 |  |  |  |  |  |  |  |
| T7 | SCMOD-T-110 | 110 | 430 | 870 | 900 | 300 | 510 | 12 |  |
|  | SCMOD-T-132 | 132 |  |  |  |  |  |  |  |
| XT7 | SCMOD-T-110 | 110 | 375 | 670 | 700 | 240 | 300 | 9 | Wall-mounted unit |
|  | SCMOD-T-132 | 132 |  |  |  |  |  |  |  |
| G7 | SCMOD-T-110G | 110 | 430 | 220 | 975 | 390 | 510 | 12 | Cabinet unit |
|  | SCMOD-T-132G | 132 |  |  |  |  |  |  |  |


| Enclosures | Converter type | Rated power (KW) | Dimension (mm) |  |  |  |  |  | Case |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | A | B | H | W | D | d |  |
| T8 | SCMOD-T-160 | 160 | 485 | 955 | 985 | 300 | 340 | 12 | Wall-mounted unit |
|  | SCMOD-T-185 | 185 |  |  |  |  |  |  |  |
|  | SCMOD-T-200 | 200 |  |  |  |  |  |  |  |
| G8 | SCMOD-T-160G | 160 | 485 | 260 | 1250 | 435 | 340 | Ф 12*32 | Cabinet unit |
|  | SCMOD-T-185G | 185 |  |  |  |  |  |  |  |
|  | SCMOD-T-200G | 200 |  |  |  |  |  |  |  |
| T9 | SCMOD-T-220 | 220 | 550 | 1100 | 1140 | 360 | 400 | 12 | Wall-mounted unit |
|  | SCMOD-T-250 | 250 |  |  |  |  |  |  |  |
|  | SCMOD-T-280 | 280 |  |  |  |  |  |  |  |
| G9 | SCMOD-T-220G | 220 | 550 | 335 | 1480 | 230 | 400 | 12 | Cabinet unit |
|  | SCMOD-T-250G | 250 |  |  |  |  |  |  |  |
|  | SCMOD-T-280G | 280 |  |  |  |  |  |  |  |
| XT10 | SCMOD-T-315G | 315 | 672 | 1100 | 1140 | 400 | 435 | 12 | Cabinet unit |
|  | SCMOD-T-350G | 350 |  |  |  |  |  |  |  |
|  | SCMOD-T-400G | 400 |  |  |  |  |  |  |  |
|  | SCMOD-T-450G | 450 |  |  |  |  |  |  |  |
| XG10 | SCMOD-T-315 | 315 | 710 | 400 | 1500 | 395 | 510 | 12 | Wall-mounted unit |
|  | SCMOD-T-350 | 350 |  |  |  |  |  |  |  |
|  | SCMOD-T-400 | 400 |  |  |  |  |  |  |  |
|  | SCMOD-T-450 | 450 |  |  |  |  |  |  |  |
| G11 | SCMOD-T-500G | 500 | To be determined |  |  |  |  |  | Cabinet unit |
|  | SCMOD-T-560G | 560 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | SCMOD-T-630G | 630 |  |  |  |  |  |  |  |  |  |  |  |  |

### 1.3 Standard electrical specification of frequency

AC220V Series:

| Type | Rated output |  |  |  | Rated input |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rated power of the applicable motor (KW) | Rated output capacity (KVA) | Rated output current <br> (A) | Maximum <br> output voltage(V) | Input current(A) |  |  |  |  |
| $\begin{gathered} \mathrm{AC} \\ 220 \mathrm{~V} \\ \text { series } \end{gathered}$ |  |  |  |  | Threephase 220 V input | Single- <br> phase <br> 220 V <br> input | Rated input voltage/frequency | Allowable voltage variation range | Allowable frequency variation range |
| 0005 | 0.5 | 1.2 | 3.2 | Three-phase | 3.8 | 4.0 |  |  |  |
| 0007 | 0.75 | 1.6 | 4.1 | 220 V | 5 | 5.2 | 220 V | +15\% |  |
| 0015 | 1.5 | 2.7 | 7.0 | corresponding | 8.4 | 10 | $50 / 60 \mathrm{~Hz}$ | $\pm$ | 47~63Hz |
| 0022 | 2.2 | 3.7 | 10.0 | input voltage | 11.5 | 15 |  |  |  |


|  |  |  |  |  | Input c | rrent(A) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{AC} \\ 220 \mathrm{~V} \\ \text { series } \end{gathered}$ | power of the applicable motor (KW) | Rated output capacity (KVA) | Rated <br> output current <br> (A) | Maximum <br> output <br> voltage(V) | Three- <br> phase <br> 220 V <br> input | Singlephase 220 V input | Rated input voltage/frequency | Allowable voltage variation range | Allowable frequency variation range |
| 0040 | 4.0 | 6.0 | 15 | Three-phase 220 V corresponding input voltage | 18 | 25 | $\begin{gathered} 220 \mathrm{~V} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$ | $\pm 15 \%$ | $47 \sim 63 \mathrm{~Hz}$ |
| 0055 | 5.5 | 8.8 | 23 |  | 26 | $\ldots$ |  |  |  |
| 0075 | 7.5 | 12 | 31 |  | 36 |  |  |  |  |
| 0110 | 11 | 17 | 45 |  | 46.5 |  |  |  |  |
| 0150 | 15 | 22 | 58 |  | 62 |  |  |  |  |
| 0185 | 18.5 | 27 | 71 |  | 76 |  |  |  |  |
| 0220 | 22 | 32 | 85 |  | 92 |  |  |  |  |
| 0300 | 30 | 44 | 115 |  | 120 |  |  |  |  |
| 0370 | 37 | 55 | 145 |  | 160 |  |  |  |  |
| 0450 | 45 | 69 | 180 |  | 190 |  |  |  |  |
| 0550 | 55 | 82 | 215 |  | 237 |  |  |  |  |
| 0750 | 75 | 110 | 283 |  | 317 |  |  |  |  |
| 0900 | 90 | 130 | 346 |  | 381 |  |  |  |  |

## AC380V Series:

| Type | Rated output |  |  |  | Rated input |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { AC } \\ 380 \mathrm{~V} \\ \text { series } \end{gathered}$ | Rated power of the applicable motor (KW) | Rated output capacity (KVA) | Rated output current <br> (A) | Maximum <br> output <br> voltage(V) | Input current <br> (A) | Rated input voltage/frequency | Allowable <br> voltage <br> variation <br> range | Allowable frequency variation range |
| 0007 | 0.75 | 1.2 | 2.5 | Three-phase $380 \mathrm{~V}$ <br> corresponding <br> input voltage | 3.2 | Three-phase$\begin{gathered} 380 \mathrm{~V} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$ | $\pm 15 \%$ | 47~63Hz |
| 0015 | 1.5 | 2.1 | 3.7 |  | 4.8 |  |  |  |
| 0022 | 2.2 | 3.0 | 5.9 |  | 6.5 |  |  |  |
| 0040 | 4.0 | 5.2 | 9.0 |  | 11.0 |  |  |  |
| 0055 | 5.5 | 7.5 | 13.0 |  | 16 |  |  |  |
| 0075 | 7.5 | 10.4 | 17.0 |  | 23 |  |  |  |
| 0110 | 11 | 15.0 | 24.0 |  | 31 |  |  |  |
| 0150 | 15 | 19.6 | 30.0 |  | 39 |  |  |  |
| 0185 | 18.5 | 25 | 37 |  | 50 |  |  |  |
| 0220 | 22 | 30 | 45 |  | 58 |  |  |  |
| 0300 | 30 | 40 | 60 |  | 75 |  |  |  |
| 0370 | 37 | 50 | 75 |  | 97 |  |  |  |
| 0450 | 45 | 60 | 90 |  | 110 |  |  |  |


| $\begin{gathered} \text { AC } \\ 380 \mathrm{~V} \\ \text { series } \end{gathered}$ | $\begin{array}{\|c} \text { Rated power } \\ \text { of the } \\ \text { applicable } \\ \text { motor } \\ (\mathrm{KW}) \end{array}$ | Rated output capacity (KVA) | Rated <br> output current <br> (A) | Maximum output voltage(V) | Input current <br> (A) | Rated input voltage/frequency | Allowable voltage variation range | Allowable frequency variation range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0550 | 55 | 73 | 110 | Three-phase 380V <br> corresponding input voltage | 140 | Three-phase$\begin{gathered} 380 \mathrm{~V} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$ | $\pm 15 \%$ | 47~63Hz |
| 0750 | 75 | 100 | 150 |  | 190 |  |  |  |
| 0900 | 90 | 116 | 176 |  | 220 |  |  |  |
| 1100 | 110 | 138 | 210 |  | 260 |  |  |  |
| 1320 | 132 | 167 | 253 |  | 320 |  |  |  |
| 1600 | 160 | 198 | 300 |  | 350 |  |  |  |
| 1850 | 185 | 224 | 340 |  | 390 |  |  |  |
| 2000 | 200 | 250 | 380 |  | 450 |  |  |  |
| 2200 | 220 | 277 | 430 |  | 480 |  |  |  |
| 2500 | 250 | 310 | 470 |  | 520 |  |  |  |
| 2800 | 280 | 343 | 520 |  | 590 |  |  |  |
| 3150 | 315 | 395 | 585 |  | 700 |  |  |  |
| 3500 | 350 | 422 | 650 |  | 780 |  |  |  |
| 4000 | 400 | 455 | 725 |  | 830 |  |  |  |
| 4500 | 450 | 540 | 820 |  | 930 |  |  |  |
| 5000 | 500 | 566 | 913 |  | 1023 |  |  |  |
| 5600 | 560 | 626 | 1030 |  | 1150 |  |  |  |
| 6300 | 630 | 777 | 1180 |  | 1300 |  |  |  |
| 7100 | 710 | 856 | 1368 |  | 1465 |  |  |  |

## Chapter II Basic Wiring Methods

### 2.1 Wiring diagram of SCMOD low-power converter (18.5kW and below)


2.2 Wiring diagram of SCMOD high-power converter ( 18.5 kW and above)


Notes:

1) The multi-function input terminal $X 3$ is fixed as a high-speed input and can be connected to high-speed pulses;
2) The analogue input VI accepts only analogue signals of 0-10V. When a potentiometer is connected, the converter itself provides a DC10V power supply and the potentiometer resistance range is recommended to be 3-5 kohm.
3) The analogue input CI accepts analogue signals of both $0-10 \mathrm{~V}$ and $0-20 \mathrm{~mA}$, selected via the CI switch; 4-20mA is a special case of 0-20mA signals, and the parameter P4-18 is set to 2.00 . CI is connected to the $0-20 \mathrm{~mA}$ signal by default.
4) AM supports analogue outputs of $0-10 \mathrm{~V}$ and $0-20 \mathrm{~mA}$, selected via the CI switch; 4-20mA is a special case of 020 mA signals, the parameter P5-10 is set to 20.0, and the parameter P5-11 is set to 0.80 . FM only supports 0 10 V analogue outputs. AM is connected to the $0-20 \mathrm{~mA}$ signal by default.
5) RS485 communication cable is recommended to use twisted shielded wire, with diameter of 0.5 mm 2 or above, both ends of the shielded wire connected to GND, not to be connected to a strong electrical grounding point.
6) The braking resistor is optional and is not installed inside the converter at the factory. The converter of this series $\leq 30 K W$ has a built-in braking unit, which is connected to the $P(D C+)$ and $P B$ terminals respectively.

## Chapter III Operation and Display

### 3.1 Description of operation and display interface

The keypad can be used to modify the function parameters, monitor the operating status of the converter, and control the operation of the converter (such as start and stop). The appearance and functional areas are shown in the figure below:

1)Description of function indicator lights:

RUN: When the light is off, the converter is stopped; when the light is on, the converter is in operation state.
LOCAL/REMOT: The light is off to indicate keypad operation command control; the light is on to indicate terminal operation command control; the light is flashing to indicate remote operation command control.
F/R: Light on indicates reverse rotation; light off indicates forward rotation.
TUNE/TC: Light on indicates torque control mode; slow flashing light indicates tuning; fast blinking light indicates a fault condition.
2)Unit indicator light:

Hz : frequency A : current V : voltage
RMP $(\mathrm{Hz}+\mathrm{A})$ : rotational speed $\%(\mathrm{~A}+\mathrm{V})$ : percentage
3)Digital display area: 5-digit LED display for displaying of setting frequency, output frequency, various monitoring data and alarm codes, etc.
4)keypad potentiometer

Changing the frequency setting value or the torque setting value by turning the potentiometer.
5)Description of key functions

The functions of the keypad keys on this converter are shown in the table below

| Keys | Name | Function Description |
| :---: | :---: | :---: |
| PRG | Programming <br> key | Menu entry or 1st, 2nd or 3rd level menu exit |
| DATA | Data key | Two, three levels of menu entry or confirmation of parameter setting |
| $\wedge$ | Incremental key | Increment of data or function codes. In the PID control setting mode, the PID value <br> is increased |
| $\vee$ | Decrement key | Decrement of data or function codes. In the PID control setting mode, the PID <br> value is decreased |
| $<$ | Shift key | In the stop display interface and the run display interface, the display parameters <br> can be selected cyclically; when modifying a parameter, you can select the <br> modification bit of the parameter. |
| RUN | Run key | For running operations in keypad operation mode |
| STOP/RESET | Stop/ reset key | During running, pressing this key to stop the running operation; If in fault alarm <br> state, pressing this key to reset the operation. The characteristics of this key are <br> controlled by the function code P7.02 |
| MF. K | Multifunctional <br> key | Switching function selection according to P7.01 |

### 3.2 Function viewing and modification instructions

The operation keypad of SCMOD frequency converter adopts a three-level menu structure for parameters setting and other operations. The three levels of menu are: function parameter group (level 1 menu) $\rightarrow$ function code (level 2 menu ) $\rightarrow$ function code set value (level 3 menu ). The operation flow is shown in Figure.


### 3.3 View of status parameters

The shift key " $<$ " allows the display of various status parameters separately. To select whether or not display the parameter by function codes P7-03 (operating parameter 1), P7-04 (operating parameter 2) and P7-05 (stop parameter) in binary bits. To distinguish the status parameters, the values are preceded by an "Identification Code".

Table of Status Parameter Identification Codes

| Parameter <br> Identification <br> Codes | Monitoring parameters | Parameter <br> Identification <br> Codes | Monitoring parameters |
| :---: | :---: | :---: | :---: |
| P | Operation frequency | b | PID feedback value |
| H | Setting frequency | z | PLC Phase |
| U | Busbar voltage | h | Input pulse frequency kHz |
| d | Output voltage | N | Feedback frequency |
| C | Output current | $[$ | Remaining runtime |
| E | Output power | J | VI Pre-calibration voltage |
| T | Output torque | J | CI Pre-calibration voltage |
| I | Input terminal status | F | Pre-calibration voltage of panel |
| o | Output terminal status | L | potentiometer |
| c | VI Voltage value | e | Lurrent power-up time |
| c | CI Voltage value | t | Current running time |
| q | Panel potentiometer voltage | a | Input pulse frequency Hz |
| l | Counting value | G | Communication setpoint |
| n | Length value | F | Actual feedback speed |
| A | Load speed display | X | Master fequency X display |

### 3.4 Password setting

The converter provides user password protection function, when PP-00 is set to non-zero, it is the user password, and the password protection will take effect when exiting the function code editing status, press the PRG key again, "-----" will be displayed, you must enter the user password correctly to enter the ordinary menu, otherwise you will not be able to enter it.
If you want to cancel the password protection function, you can only enter by password and set PP-00 to 0 .

### 3.5 Self-learning of motor parameters

To select the vector control operation mode, the nameplate parameters of the motor must be accurately entered before the frequency converter runs, and the SCMOD converter matches the standard motor parameters according to these nameplate parameters; The vector control mode is highly dependent on motor parameters, and accurate parameters of the controlled motor must be obtained in order to obtain good control performance.
The self-learning steps of motor parameters are as follows:
First select the command source ( $\mathrm{P} 0-02$ ) as the operating keypad command channel. And then please enter the following parameters according to the actual motor parameters (selected according to the current motor).

| Motor selection | Parameters |
| :---: | :---: |
| Motor 1 | P1-00: Motor type selection; P1-01: Motor rated power |
|  | P1-02: Motor rated voltage; P1-03: Motor rated current |
|  | P1-04: Motor rated frequency; P1-05: Motor rated speed |
| Motor 2 | A2-00: Motor type selection; A2-01: Motor rated power |
|  | A2-02: Motor rated voltage; A2-03: Motor rated current |
|  | A2-04: Motor rated frequency; A2-05: Motor rated speed |

Asynchronous motors must not be completely disconnected from the load: Then P1-37=1 (A2-37=1 for motor 2), (asynchronous motor static self-learning), then press the RUN key on the keypad to complete the asynchronous motor static self-learning, and only finish the learning of the parameters P1-06~P1-08 (A2-06~A2-08).
Asynchronous motor and load are completely disconnected: Then P1-37=2 (A2-37=2 for motor 2), (complete self-learning for asynchronous motor), then press RUN on the keypad, the converter will automatically calculate the learning of parameters P1-06~P1-10 (A2$06 \sim$ A2-10) of the motor.

### 3.6 Application parameter macro

The SCMOD converter offers a quick parameter setting method for certain applications, namely the application parameter macro, where the user only needs to set one parameter PP05 , and the converter will automatically set up the application environment, which is very convenient for the user.
The following application parameter macros have been completed at present:
Single converter constant pressure water supply $($ PP-05 $=1)$;

## Chapter IV Description of Functional Parameters

Description of functional parameters:


Notes: in following table © Cannot be changed during operation; ○ Can be changed during operation

- Read-only property

| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| PO Group Basic functional group |  |  |  |  |
| PO-00 | GP type display | $1 \sim 2$ <br> 1: G type (Constant torque load type) <br> 2: P type (Fans, pumps and other load types) | 2 | © |
| P0-01 | No. 1 Motor control method | $0 \sim 2$ <br> 0 : Vector control without speed sensor (SVC) <br> 1: Vector control with speed sensor (FVC) 2: V/F control | 2 |  |
| P0-02 | Command source selection | $0 \sim 3$ <br> 0 : keypad operated command channel <br> (LOCAL/REMOT OFF) <br> 1: Terminal command channel (LOCAL/REMOT ON) <br> 2: Communication command channel (LOCAL/REMOT Flash) | 0 | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| P0-03 | Selection of main frequency source $x$ | 0~9 <br> 0 : Digital setting (preset frequency P0-08, UP/DOWN modifiable, no memory on power off) <br> 1: Digital setting (preset frequency P0-08, UP/DOWN modifiable, power-down memory) <br> 2:VI setting 3:Cl setting <br> 4: Keypad potentiometer setting <br> 5: High-speed pulse setting (X3) <br> 6: multi-segment command setting <br> 7: PLC program setting <br> 8: Process PID setting <br> 9: Communication settings | 0 | © |
| PO-04 | Selection auxiliary frequency source $Y$ | Same function as PO-03 | 0 | © |
| P0-05 | Selection of auxiliary frequency source Y range during superposition | 0 : Relative to maximum frequency <br> 1: Relative to frequency source $X$ | 0 | $\bigcirc$ |
| P0-06 | Auxiliary frequency source $Y$ range when superimposed | 0\% $150 \%$ | 100\% | $\bigcirc$ |
| P0-07 | Selection of frequency source superimposition | Digit: Frequency source selection <br> 0 : Main frequency source $X$ <br> 1: Results of primary and secondary operations <br> (The operational relationship is determined by ten digits) <br> 2: Switching of main frequency source $X$ and auxiliary frequency source $Y$ <br> 3: Switching of the primary frequency source $X$ and the results of the primary and secondary operations <br> 4: Switching of auxiliary frequency source $Y$ and the operation results of the main and auxiliary <br> Tens: Frequency source primary and secondary arithmetic relationship $0: P+S \quad 1: P-S$ <br> 2: Max. Value of both 3: Min. Value of both | 00 | $\bigcirc$ |
| P0-08 | Preset frequency | $0.00 \mathrm{~Hz} \sim$ Max. frequency(PO-10) | 50.00 | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| P0-09 | Running direction | 0 : Consistent direction <br> 1: Opposite direction | 0 | $\bigcirc$ |
| P0-10 | Max. frequency | $50.00 \mathrm{~Hz} \sim 500.00 \mathrm{~Hz}$ | 50.00 | © |
| P0-11 | Upper limit frequency source | $\begin{gathered} \hline \text { 0: P0-12 setting } \\ \text { 1: } \mathrm{VI} \\ \text { 2: } \mathrm{Cl} \end{gathered}$ <br> 3: keypad potentiometers <br> 4: High-speed pulse setting(X3) 5: Communication given | 0 | (0) |
| P0-12 | Upper limit frequency | Lower frequency limit P0-14 to maximum frequency P0-10 | 50.00 | (0) |
| P0-13 | Upper frequency offset | $0.00 \mathrm{~Hz} \sim$ Max.frequency P0-10 | 0.00 | 0 |
| P0-14 | Lower frequency offset | $0.00 \mathrm{~Hz} \sim \mathrm{Max}$. frequency P0-12 | 0.00 | $\bigcirc$ |
| P0-15 | Carrier frequency | $0.5 \mathrm{kHz} \sim 16.0 \mathrm{kHz}$ | Model setting | $\bigcirc$ |
| P0-16 | Carrier frequency adjustment with temperature | $\begin{gathered} 0 \sim 1 \\ 0: \text { No } \end{gathered}$ | 1: Yes | 1 |
| P0-17 | Acceleration time 1 | 0.00s~65000s | Model setting | $\bigcirc$ |
| P0-18 | Deceleration time 1 | 0.00s~65000s | Model setting | $\bigcirc$ |
| P0-19 | Acceleration/deceleration time units | $\begin{gathered} 0 \sim 2 \\ 0: 1 \mathrm{~s} \\ 1: 0.1 \mathrm{~s} \\ 2: 0.01 \mathrm{~s} \end{gathered}$ | 1 | ( ) |
| P0-21 | Offset frequency of auxiliary frequency source during superposition | 0.00Hz~Max.frequency P0-10 | 0.00 | $\bigcirc$ |
| PO-22 | Frequency command resolution | $0^{\sim} 2$ $0: 1 \mathrm{~Hz}$ 1: 0.1 Hz 2: 0.01 Hz | 2 | © |
| PO-23 | Selection of digital set frequency stop memory | 0: No memory; <br> 1: Memory | 1 | $\bigcirc$ |
| PO-24 | Upper limit frequency source | 0: P0-12 setting 1: VI 2: Cl 3: keypad potentiometers 4: High-speed pulse setting(X3) 5: Communication given | 0 | © |
| PO-25 | Upper limit frequency | Lower frequency limit P0-14 to maximum frequency P0-10 | 50.00 | (0) |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| PO-26 | Run-time frequency instruction UP/DOWN reference | 0: Running frequency <br> 1: Setting frequency | 1 | © |
| P0-27 | Command sources bundled with frequency sources | Digit: Selection of operation keypad command bundled with frequency sources <br> 0 : unbound <br> 1: Digital frequency binding <br> 2:VI binding <br> 3:Cl binding <br> 4: Keypad potentiometer binding <br> 5: High-speed pulse (X3) binding <br> 6: multi-speed binding <br> 7: PLC program binding <br> 8: Process PID binding <br> 9: Communication binding <br> Tens: Selection of terminal command binding frequency source <br> Hundredths: Selection of communication command binding frequency source Thousands: Selection of automatic operation binding frequency source | 0000 | $\bigcirc$ |
| P0-26 | Run-time frequency instruction UP/DOWN reference | 0 : Running frequency <br> 1: Setting frequency | 1 | © |
| P1 Group Parameters of Motor 1 |  |  |  |  |
| P1-00 | Motor type selection | $0 \sim 1$ <br> 0 : Common asynchronous motors <br> 1: Frequency conversion asynchronous motor | 0 | © |
| P1-01 | Motor rated power | 0.1~1000.0kW | Model setting | (0) |
| P1-02 | Motor rated voltage | 1~2000V | Model setting | ( |
| P1-03 | Motor rated current | $\begin{gathered} 0.01 \mathrm{~A}^{\sim} 655.35 \mathrm{~A} \\ \text { (Converter frequency<=55kW) } \\ 0.1 \mathrm{~A}^{\sim} \text { 6553.5A } \\ \text { (Converter frequency>55kW) } \end{gathered}$ | Model setting | © |
| P1-04 | Motor rated frequency | $0.01 \mathrm{~Hz} \sim$ P0-10 (Max. frequency) | Model setting | © |
| P1-05 | Motor rated speed | 1~65535rpm | Model setting | $\bigcirc$ |
| P1-06 | Stator resistance of asynchronous motor | $\begin{gathered} 0.001 \sim 65.535 \Omega(<=55 \mathrm{~kW}) 0.0001^{\sim} 6.5535 \\ \Omega(>55 \mathrm{~kW}) \end{gathered}$ | Tuning parameters | © |
| P1-07 | Rotor resistance of asynchronous motor | $\begin{gathered} 0.001 \sim 65.535 \Omega(<=55 \mathrm{~kW}) 0.0001^{\sim} 6.5535 \\ \Omega(>55 \mathrm{~kW}) \end{gathered}$ | Model setting | © |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| P1-08 | Leakage inductance of asynchronous motor | $\begin{aligned} & \hline 0.01 \sim 655.35 \mathrm{mH}(<=55 \mathrm{~kW}) \\ & 0.001^{\sim} 65.535 \mathrm{mH}(>55 \mathrm{~kW}) \end{aligned}$ | Tuning parameters | ( |
| P1-09 | Mutual inductance of asynchronous motor | $\begin{aligned} & \hline 0.1^{\sim} 6553.5 \mathrm{mH}(<=55 \mathrm{~kW}) \\ & 0.01^{\sim} 655.35 \mathrm{mH}(>55 \mathrm{~kW}) \end{aligned}$ | Tuning parameters | ( |
| P1-10 | No-load current of asynchronous motor | $\begin{gathered} 0.01 \sim \text { P1-03(<=55kW) } \\ 0.1 \sim \text { P1-03(>55kW) } \end{gathered}$ | Tuning parameters | ( ) |
| P1-27 | Number of encoder lines | 1~65535 | 2500 | © |
| P1-28 | Encoder type | 0 : ABZ incremental encoder <br> 1: UVW incremental encoder <br> 2: Rotary transformer <br> 3: Sine and cosine encoder <br> 4: Wire-saving UVW encoder | 0 | ( ) |
| P1-30 | $A B Z$ incremental encoder $A B$ phase sequence | 0: Forward <br> 1: Reverse | 0 | © |
| P1-31 | Encoder mounting angle | $0.0 \sim 359.9^{\circ}$ | $0.0^{\circ}$ | () |
| P1-32 | UVW encoder UVW phase sequence | 0 : Forward <br> 1: Reverse | 0 | © |
| P1-33 | UVW encoder offset angle | $0.0 \sim 359.9^{\circ}$ | $0.0^{\circ}$ | ( |
| P1-34 | Number of pole pairs in resolver | 1~65535 | 1 | ( |
| P1-36 | Speed feedback PG break detection time | $\begin{gathered} \text { 0.0: No action } \\ 0.1 \mathrm{~s} \sim 10.0 \mathrm{~s} \end{gathered}$ | 0.0 | © |
| P1-37 | Self-learning of motor parameters selection | 0: No action <br> 1: Static self-learning of asynchronous motor parameters 1 <br> 2: Complete self-learning of asynchronous motor parameters <br> 3: Static self-learning of asynchronous motor parameters 2 | 0 | © |
| Group P2 Vector Control Parameters of the First Motor |  |  |  |  |
| P2-00 | Velocity loop proportional gain 1 | 1~100 | 50 | $\bigcirc$ |
| P2-01 | Velocity loop integration time 1 | 0.01s~10.00s | 1.0s | $\bigcirc$ |
| P2-02 | Switching frequency 1 | 0.00~P2-05 | 5.00 Hz | $\bigcirc$ |
| P2-03 | Velocity loop integration time 2 | 1~100 | 30 | $\bigcirc$ |
| P2-04 | Velocity loop integration time 2 | 0.01s~10.00s | 1.00s | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| P2-05 | Switching frequency 2 | P2-02~Max. frequency | 10.00 Hz | $\bigcirc$ |
| P2-06 | Vector controlled differential gain | 50\%~200\% | 100\% | $\bigcirc$ |
| P2-07 | Velocity loop filter time constant | 0.0~0.100s | 0.0 | $\bigcirc$ |
| P2-08 | Vector controlled overexcitation gain | 0~200 | 64 | $\bigcirc$ |
| P2-09 | Selection of upper torque limit source in speed control mode | 0: Setting of function code P2-10 <br> 1: VI setting <br> 2: Cl setting <br> 3: keypad potentiometer setting <br> 4: High-speed pulse setting (X3) <br> 5: Communication setting <br> 6: MIN (VI, CI) setting <br> 7: MAX (VI, CI) setting <br> The full range of options 1-7 corresponds to P2-10 | 0 | $\bigcirc$ |
| P2-10 | Digital setting of upper torque limit in speed control mode | 0.0\% $200.0 \%$ | 150.0\% | $\bigcirc$ |
| P2-13 | Excitation regulation proportional gain | 0~60000 | 2000 | $\bigcirc$ |
| P2-14 | Excitation regulation integral gain | 0~60000 | 1300 | $\bigcirc$ |
| P2-15 | Torque regulation proportional gain | 0~60000 | 2000 | $\bigcirc$ |
| P2-16 | Torque regulation integral gain | 0~60000 | 1300 | $\bigcirc$ |
| P2-17 | Velocity loop integral property | Digit: points separation <br> 0 : Invalid <br> 1: Valid | 0 | $\bigcirc$ |
| P3 Group V/F Control Parameters |  |  |  |  |
| P3-00 | VF curve setting | 0: Straight line V/F <br> 1: Multiple points $\mathrm{V} / \mathrm{F}$ <br> 2: Square V/F <br> 3: 1.2 times $V / F$ <br> 4: 1.4 times V/F <br> 6: 1.6 times V/F <br> 8: 1.8 times V/F <br> 9: Reserve <br> 10: VF full separation mode <br> 11: VF semi-separate mode | 0 | © |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| P3-01 | Torque boost | 0.0\%: (automatic torque boost) $0.1 \% ~ 30.0 \%$ | Model setting | $\bigcirc$ |
| P3-03 | Multi-point VF frequency point 1 | 0.00Hz~P3-05 | 0.00 Hz | © |
| P3-04 | Multi-point VF voltage point 1 | 0.0\% $100.0 \%$ | 0.0\% | () |
| P3-05 | Multi-point VF frequency point 2 | P3-03~P3-07 | 0.00 Hz | () |
| P3-06 | Multi-point VF voltage point 2 | 0.0\% $100.0 \%$ | 0.0\% | © |
| P3-07 | Multi-point VF frequency point 3 | P3-05~Motor rated frequency (P1-04) | 0.00 Hz | () |
| P3-08 | Multi-point VF voltage point3 | 0.0\% $100.0 \%$ | 0.0\% | © |
| P3-09 | VF differential compensation gain | 0.0\%~200.0\% | 0.0\% | 0 |
| P3-10 | VF overexcitation gain | 0~200 | 64 | $\bigcirc$ |
| P3-11 | VF oscillation suppression gain | 0~100 | Model setting | $\bigcirc$ |
| P3-13 | VF separated voltage sources | 0: Digit setting(P3-14) <br> 1: VI Setting <br> 2: CI Setting <br> 3: keypad potentiometer setting <br> 4: High-speed pulse setting (X3) <br> 5: multi-speed setting <br> 6: PLC program setting <br> 7: Process PID setting <br> 8: Communication setting <br> Note: $100.0 \%$ corresponds to the motor rated voltage | 0 | $\bigcirc$ |
| P3-14 | VF separated voltage Digit setting | 0V~motor rated voltage | OV | $\bigcirc$ |
| P3-15 | VF separated voltage rise time | $0.0 \mathrm{~s} \sim 1000.0 \mathrm{~s}$ <br> Note: indicates the time changing from OV to motor rated voltage | 0.0s | $\bigcirc$ |
| P3-16 | VF separated voltage drop time | $0.0 \mathrm{~s} \sim 1000.0 \mathrm{~s}$ <br> Note: indicates the time the motor rated voltage changes to 0 V | 0.0s | $\bigcirc$ |
| P3-17 | VF Separation shutdown mode | 0 : Frequency/voltage independently reduced to 0 <br> 1: The frequency is reduced again after the voltage is reduced to 0 | 0 | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| P4 Group Input Terminals |  |  |  |  |
| P4-00 | FWD terminal function selection | $0 \sim 59$ <br> 0 : No function 1: Forward running 2: Reverse running <br> 3: Three-wire operation enable 4: Forward rotation pointing <br> (FJOG) 5: Reverse rotation pointing (RJOG) 6: Terminal UP <br> 7: Terminal DOWN 8: Stop freely 9: Fault reset (RESET) <br> 10: Running suspension <br> 11: External fault normally open input <br> 12: multi-segment command terminal 1 <br> 13: multi-segment command terminal 2 <br> 14: multi-segment command terminal 3 <br> 15: multi-segment command terminal 4 <br> 16: Acceleration and deceleration time selection terminal 1 <br> 17: Acceleration and deceleration time selection terminal 2 <br> 18: Frequency source switching 19: UP/DOWN Setting zero (terminal, keypad) 20: Switching between keypad commands and terminal commands; Switching between keypad commands and communication commands <br> 21: Acceleration and deceleration prohibited <br> 22: Process PID pause 23: PLC program status reset <br> 24: Pendulum frequency pause 25: Counter input <br> 26: Counter reset 27: Length counter input <br> 28: Length counter reset 29: Torque control prohibition 30: Pulse frequency input (valid for X3 only) <br> 31: Reserved 32: Immediate DC brake 33: External fault normally closed input 34: Frequency modification enable <br> 35: The process PID action direction is reversed 36: Stop on keyboard request 37: Switching between terminal commands and communication commands 38: Process PID integral pause 39: Switching between frequency source $X$ and preset frequency 40: Switching between frequency source $Y$ and preset frequency <br> 41: Motor selection terminal 1 <br> 42: Motor selection terminal 2 <br> 43: Switching of process PID parameter <br> 44: User-defined fault 1 45: User-defined fault 2 <br> 46: Switching of speed control and torque control <br> 47: Emergency stop 48: Stop at any command 49: DC brake for speed reduction <br> 50: This running time is cleared 51-59: Reserved | 1 | $\bigcirc$ |
| P4-01 | REV terminal function selection |  | 2 | © |
| P4-02 | X1 terminal function selection |  | 9 | O |
| P4-03 | X2 terminal function selection |  | 12 | $\bigcirc$ |
| P4-04 | X3 terminal function selection |  | 13 | O |
| P4-05 | X4 terminal function selection |  | 0 | © |
| P4-06 | X5 terminal function selection |  | 0 | © |
| P4-07 | X6 terminal function selection |  | 0 | © |
| P4-08 | Reserved |  | 0 | © |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| P4-09 | X1 Shutdown delay action time | 0.0s~3600.0s | 0.0s | $\bigcirc$ |
| P4-10 | Filter time of input terminals X1~X6 | 0.000s~1.000s | 0.010s | $\bigcirc$ |
| P4-11 | Selection of terminal command start method | 0: Two-wire start/stop method 1 <br> 1: Two-wire start/stop method 2 <br> 2: Three-wire start/stop method 1 <br> 3: Three-wire start/stop method 2 | 0 | © |
| P4-12 | Terminal UP/DOWN change rate | $0.001 \mathrm{~Hz} / \mathrm{s} \sim 65.535 \mathrm{~Hz} / \mathrm{s}$ | $1.00 \mathrm{~Hz} / \mathrm{s}$ | $\bigcirc$ |
| P4-13 | VI Min. input | $0.00 \mathrm{~V} \sim$ P4-15 | 0.00 V | $\bigcirc$ |
| P4-14 | VI Min. input correspondence setting | -100.0\% ${ }^{\sim}+100.0 \%$ | 0.0\% | $\bigcirc$ |
| P4-15 | VI Max. input | P4-13~+10.00V | 10.00V | $\bigcirc$ |
| P4-16 | VI Max. input correspondence setting | -100.0\% ${ }^{\sim}+100.0 \%$ | 100.0\% | $\bigcirc$ |
| P4-17 | VI Filter time | 0.00s~10.00s | 0.040s | $\bigcirc$ |
| P4-18 | Cl Min. input | 0.00V~P4-20 | 0.00 V | $\bigcirc$ |
| P4-19 | Cl Min. input correspondence setting | -100.0\%~+100.0\% | 0.0\% | $\bigcirc$ |
| P4-20 | CI Max. input | P4-18~+10.00V | 10.00 V | 0 |
| P4-21 | Cl Max. input correspondence setting | -100.0\% ${ }^{\sim}+100.0 \%$ | 100.0\% | $\bigcirc$ |
| P4-22 | CI Filter time | 0.00s~10.00s | 0.040s | $\bigcirc$ |
| P4-23 | Keypad potentiometer min. input | $0.00 \mathrm{~V} \sim$ P4-25 | 0.00 V | $\bigcirc$ |
| P4-24 | Keypad potentiometer min. Input setting | -100.0\% ${ }^{\sim}+100.0 \%$ | -100.0\% | $\bigcirc$ |
| P4-25 | Keypad potentiometer max. input | P4-23 ${ }^{\sim}+10.00 \mathrm{~V}$ | 10.00 V | $\bigcirc$ |
| P4-26 | Keypad potentiometer max. Input setting | -100.0\%~+100.0\% | 100.0\% | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| P4-27 | Keypad potentiometer filter time | 0.00s~10.00s | 0.10s | $\bigcirc$ |
| P4-28 | High-speed pulse (X3) min. input | $0.00 \mathrm{kHz} \sim$ P4-30 | 0.00 kHz | $\bigcirc$ |
| P4-29 | High-speed pulse (X3) min. input Corresponding setting | -100.0\% ${ }^{\sim} 100.0 \%$ | 0.0\% | $\bigcirc$ |
| P4-30 | High-speed pulse (X3) max. input | P4-28~100.00kHz | 50.00 kHz | $\bigcirc$ |
| P4-31 | High-speed pulse (X3) max. input Corresponding setting | -100.0\% ${ }^{\sim} 100.0 \%$ | 100.0\% | $\bigcirc$ |
| P4-32 | High-speed pulse (X3) filter time | 0.00s~10.00s | 0.10s | $\bigcirc$ |
| P4-33 | FWD shutdown delay action time | 0.0s~3600.0s | 0.0s |  |
| P4-34 | REV shutdown delay action time | 0.0s~3600.0s | 0.0s |  |
| P4-35 | FWD turn on delay action time | 0.0s~3600.0s | 0.0s |  |
| P4-36 | REV turn on delay action time | 0.0s~3600.0s | 0.0s |  |
| P4-37 | X1 turn on delay action time | 0.0s~3600.0s | 0.0s |  |
| P4-38 | Digit input terminal signal polarity reversal mode selection 1 | 0: F logic 1: R logic Digit: FWD Tens: REV Hundreds: X1 Thousands: X2 Ten Thousands: X3 | 00000 | (0) |
| P4-39 | Digit input terminal signal polarity reversal mode selection 2 | O: F logic 1: R logic Digit: X4 Tens: X5 Hundreds: X6 Thousands: reserved Ten Thousands: reserved | 00000 | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| P5 Group Output Terminals |  |  |  |  |
| P5-00 | MO2 Terminal output mode selection | 0: Pulse output <br> 1: Switching output | 1 | $\bigcirc$ |
| P5-01 | MO2 (Switching) output function selection | 0: No output 1: Frequency converter in operation 2: Fault output (fault stop) | 0 | $\bigcirc$ |
| P5-02 | Relays (A-B-C) output function selection <br> $B-C$ is normally closed <br> $A-B$ is normally open | 3: Frequency level detection FDT1 output <br> 4: Frequency reaches 5: In zero-speed operation (no output at stop) <br> 6: Pre-alarm for motor overload | 1 | $\bigcirc$ |
| P5-04 | Relays (A1-B1-1C) output function selection B1-C1 is normally closed A1-B1 is normally open | 7: Pre-alarm for converter overload <br> 8: Preset value reaches 9: Specified value reaches 10: Length reaches <br> 11: PLC program loop completed | 2 | $\bigcirc$ |
| P5-05 | Standby | 12: Cumulative running time reaches <br> 13: Frequency under limitation <br> 14: Torque under limitation 15: Ready to run 16: $\mathrm{VI}>\mathrm{Cl} 17$ : Upper limit frequency reaches <br> 18: Lower limit frequency reaches (operation related) 19: Undervoltage output <br> 20: Communication setting <br> 21: Positioning completed (reserved) <br> 22: Positioning proximity (reserved) <br> 23: In zero-speed operation 2 (also output at stop) 24: Cumulative power-up time reaches <br> 25: Frequency level detection FDT2 output <br> 26: Frequency 1 reaches output <br> 27: Frequency 2 reaches output <br> 28: Current 1 reaches output <br> 29: Current2 reaches output (also output at stop) 30: timed arrival output <br> 31:VI Input overrun 32: Load dropping <br> 33: Reverse running in progress <br> 34: Zero current state <br> 35: Module temperature reaches <br> 35: Module temperature reaches <br> 36: Output current overrun <br> 37: Lower frequency limit to <br> 38: Alarm output (keep running) <br> 39: Motor over-temperature pre-alarm <br> 40: This running time arrives | 4 | $\bigcirc$ |



| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| P5-24 | Reserved | 0.0s~3600.0s | 0.0s | $\bigcirc$ |
| P5-25 | Relays A1-B2-C3 output break delay time | 0.0s~3600.0s | 0.0s | $\bigcirc$ |
| P5-26 | Reserved | 0.0s~3600.0s | 0.0s | $\bigcirc$ |
| P5-27 | Digit output terminal signal polarity reversal mode selection | 0: F logic 1: R logic Digit: MO2 (switching) Tens: relays A-B-C Hundreds: reserved Thousands: relays A1-B1-C1 Ten Thousands: reserved | 00000 | 0 |
| P6 Group Start/stop Control |  |  |  |  |
| P6-00 | Starting method | 0: Direct start <br> 1: Speed tracking restart <br> 2: pre-excited start (AC asynchronous motor) | 0 | $\bigcirc$ |
| P6-01 | RPM tracking method | 0 : Starting with the shutdown frequency <br> 1: Starting from zero speed <br> 2: From max. frequency | 0 | $\bigcirc$ |
| P6-02 | Fast and slow RPM tracking | 1~100 | 20 | $\bigcirc$ |
| P6-03 | Starting frequency | $0.00 \mathrm{~Hz} \sim 10.00 \mathrm{~Hz}$ | 0.00 Hz | $\bigcirc$ |
| P6-04 | Starting frequency holding time | 0.0s~100.0s | 0.0s | $\bigcirc$ |
| P6-05 | Starting DC braking current/ <br> Pre-excitation current | 0\% $100 \%$ | 0\% | $\bigcirc$ |
| P6-06 | Start DC braking time/ Pre-excitation time | 0.0s~100.0s | 0.0s | $\bigcirc$ |
| P6-07 | Acceleration and deceleration methods | 0 : Linear acceleration and deceleration 1:S curve acceleration/deceleration $A$ | 0 | $\bigcirc$ |
| P6-08 | S-curve start time ratio | 0.0\%~(100.0\%-P6-09) | 30.0\% | $\bigcirc$ |
| P6-09 | S-curve ending time ratio | 0.0\%~(100.0\%-P6-08) | 30.0\% | $\bigcirc$ |
| P6-10 | Stopping method | 0: Slow down and stop 1: Stop freely | 0 | $\bigcirc$ |
| P6-11 | Stopping DC braking start frequency | $0.00 \mathrm{~Hz} \sim$ Max. frequency | 0.00 Hz | $\bigcirc$ |
| P6-12 | Stopping DC brake waiting time | 0.0s~100.0s | 0.0s | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| P6-13 | Stopping DC braking current | 0\%~100\% | 0\% | $\bigcirc$ |
| P6-14 | Stopping DC braking time | 0.0s~100.0s | 0.0s | $\bigcirc$ |
| P6-15 | Zero speed output prohibition | $\overline{0 \sim 1}$ <br> 0 With output 1 Without output | 0 | $\bigcirc$ |
| P7 GROUP Keypad and Display |  |  |  |  |
| P7-01 | MF. K key function selection | 0: MF. K invalid <br> 1: Switching of operation keypad command channel and remote command channel (terminal command channel or communication command channel) 2: Switching of forward and reverse <br> 3: Forward rotation pointing <br> 4: Reverse rotation pointing | 0 | $\bigcirc$ |
| P7-02 | STOP/RESET key function | 0 : The stop function of STOP/RES key is only available in keyboard operation <br> 1: The stop function of STOP/RES key is available in all modes of operation | 0 | $\bigcirc$ |
| P7-03 | LED running display parameters 1 | 0000~FFFF <br> Bit00: Running frequency $1(\mathrm{~Hz})$ <br> Bit01: Set frequency (Hz) <br> Bit02: Busbar voltage(V) <br> Bit03: Output voltage(V) <br> Bit04: Output current(A) <br> Bit05: Output power(kW) <br> Bit06: Output torque (\%) <br> Bit07:X terminal input status <br> Bit08: Terminal output status <br> Bit09:VI voltage (V) <br> Bit10:Cl voltage (V) <br> Bit11: Keypad potentiometer voltage <br> Bit12: Counting value <br> Bit13: Length value <br> Bit14: Load speed display Bit15: PID setting | 0x1F | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| P7-04 | LED running display parameters 2 | 0000~FFFF <br> Bit00: PID feedback Bit01: PLC stage <br> Bit02: High-speed input pulse frequency <br> $(\mathrm{kHz})$ Bit03: Operating frequency $2(\mathrm{~Hz})$ <br> Bit04: Remaining running time <br> Bit05:VI Voltage before calibration(V) <br> Bit06:CI Voltage before calibration(V) <br> Bit07: Keypad potentiometer calibration voltage Bit08: Line speed <br> Bit09: Current power on time (Hour) <br> Bit10: Current running time (Min) <br> Bit11: High-speed input pulse frequency <br> (kHz) <br> Bit12: Communication setpoint <br> Bit13: Encoder feedback speed (Hz) <br> Bit14: Mains frequency $X$ display ( Hz ) <br> Bit15: Auxiliary frequency $Y$ display ( Hz )) | 0 | $\bigcirc$ |
| P7-05 | LED Stop display parameters | 0000~FFFF <br> Bit00: Set frequency (Hz) <br> Bit01: Busbar voltage(V) <br> Bit02:X terminal input status <br> Bit03: Terminal output status <br> Bit04:VI voltage(V) Bit05:Cl voltage (V) <br> Bit06: Keyboard potentiometer voltage <br> Bit07: Counting value Bit08: Length value <br> Bit09: PLC stage Bit10: Load speed <br> Bit11: PID setting <br> Bit12: PID feedback <br> Bit13: High-speed input pulse frequency(kHz) | 33 | $\bigcirc$ |
| P7-06 | Load speed display factor | 0.0001~6.5000 | 1.0000 | $\bigcirc$ |
| P7-07 | Radiator temperature of inverter module | $0.0{ }^{\circ} \mathrm{C} \sim 100.0^{\circ} \mathrm{C}$ | - | $\bullet$ |
| P7-08 | Product No. |  | 500.00 | $\bullet$ |
| P7-09 | Cumulative running time | Oh~65535h | - | $\bullet$ |
| P7-10 | Performance version No. | - | 1.00 | - |
| P7-11 | Software version No. | - | 1.00 | $\bullet$ |
| P7-12 | Spare | - | - | $\bigcirc$ |
| P7-13 | Cumulative power on time | 0h~65535h | - | $\bullet$ |
| P7-14 | Cumulative power consumption | 0kW~65535 KW | - | $\bullet$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| P8 Group Auxiliary Functions |  |  |  |  |
| P8-00 | Running frequency of inching | $0.00 \mathrm{~Hz} \sim \mathrm{Max}$. frequency | 2.00 Hz | $\bigcirc$ |
| P8-01 | Inching acceleration time | 0.0s~6500.0s | 20.0s | $\bigcirc$ |
| P8-02 | Inching deceleration time | 0.0s~6500.0s | 20.0s | $\bigcirc$ |
| P8-03 | Acceleration time 2 | 0.0s~6500.0s | Model setting | $\bigcirc$ |
| P8-04 | Deceleration time 2 | 0.0s~6500.0s | Model setting | $\bigcirc$ |
| P8-05 | Acceleration time 3 | 0.0s~6500.0s | Model setting | $\bigcirc$ |
| P8-06 | Deceleration time 3 | 0.0s~6500.0s | Model setting | $\bigcirc$ |
| P8-07 | Acceleration time 4 | 0.0s~6500.0s | Model setting | $\bigcirc$ |
| P8-08 | Deceleration time 4 | 0.0s~6500.0s | Model setting | $\bigcirc$ |
| P8-09 | Jumping frequency 1 | $0.00 \mathrm{~Hz} \sim$ Max. frequency | 0.00 Hz | $\bigcirc$ |
| P8-10 | Jumping frequency 2 | $0.00 \mathrm{~Hz} \sim$ Max. frequency | 0.00 Hz | $\bigcirc$ |
| P8-11 | Jump frequency amplitude | $0.00 \mathrm{~Hz} \sim$ Max. frequency | 0.01 Hz | $\bigcirc$ |
| P8-12 | Dead time for forward and reverse rotation | 0.0s~3000.0s | 0.0s | $\bigcirc$ |
| P8-13 | Reverse control enables | 0:Allowed; 1: Prohibited | 0 | $\bigcirc$ |
| P8-14 | Running mode with set frequency below the lower frequency | 0 : Running at the lower frequency limit <br> 1: Stop <br> 2: Zero speed running | 0 | $\bigcirc$ |
| P8-15 | Sagging control | $0.00 \mathrm{~Hz} \sim 10.00 \mathrm{~Hz}$ | 0.00 Hz | $\bigcirc$ |
| P8-16 | Resistive energy braking threshold voltage | 120~150\% | 130 | $\bigcirc$ |
| P8-17 | Resistance energy braking utilization rate | 0~100\% | 50\% | $\bigcirc$ |
| P8-18 | Starting protection options | 0:No protection; 1: Protection | 0 | $\bigcirc$ |
| P8-19 | Frequency detection value (FDT1) | $0.00 \mathrm{~Hz} \sim$ Max. frequency | 1.50 Hz | $\bigcirc$ |
| P8-20 | Frequency detection lag value (FDT1) | 0.0\% ${ }^{\text {100.0\% (PDT1 level) }}$ | 5.0\% | $\bigcirc$ |
| P8-21 | Frequency reaches detection width | 0.0\% ${ }^{\sim} 100.0 \%$ (max. frequency) | 0.0\% | $\bigcirc$ |
| P8-22 | Is the jump frequency valid during acceleration and deceleration | 0:Invalid; 1: Valid | 0 | $\bigcirc$ |
| P8-25 | Switching frequency point between acceleration time 1 and acceleration time 2 | $0.00 \mathrm{~Hz} \sim \mathrm{Max}$. frequency | 0.00 Hz | $\bigcirc$ |
| P8-26 | Switching frequency point between deceleration time 1 and deceleration time 2 | $0.00 \mathrm{~Hz} \sim \mathrm{Max}$. frequency | 0.00 Hz | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| P8-27 | Terminal inching priority | 0:Invalid; 1: Valid | 0 | 0 |
| P8-28 | Frequency detection value (FDT2) | $0.00 \mathrm{~Hz} \sim$ Max. frequency | 50.00 Hz | $\bigcirc$ |
| P8-29 | Frequency detection lag value (FDT2) | 0.0\% $100.0 \%$ (FDT2 level) | 5.0\% | $\bigcirc$ |
| P8-30 | Arbitrary arrival frequency detection value 1 | $0.00 \mathrm{~Hz} \sim \mathrm{Max}$. frequency | 50.00 Hz | $\bigcirc$ |
| P8-31 | Arbitrary arrival frequency detection width 1 | 0.0\% $100.0 \%$ (Max. frequency) | 0.0\% | $\bigcirc$ |
| P8-32 | Arbitrary arrival frequency detection value 2 | $0.00 \mathrm{~Hz} \sim \mathrm{Max}$. frequency | 50.00 Hz | $\bigcirc$ |
| P8-33 | Arbitrary arrival frequency detection width 2 | 0.0\% ${ }^{\text {100.0\% (Max. frequency) }}$ | 0.0\% | $\bigcirc$ |
| P8-34 | Zero current detection level | $0.0 \% \sim 300$ Arbitrary arrival frequency detection width\% $100.0 \%$ corresponding to the rated motor current | 5.0\% | $\bigcirc$ |
| P8-35 | Zero current detection delay time | 0.01s~600.00s | 0.10s | 0 |
| P8-36 | Output current exceeds the limit | $0.0 \%$ (No test) $0.1 \% \sim 300.0 \%$ (motor rated current) | 200.0\% | $\bigcirc$ |
| P8-37 | Output current overrun detection delay time | 0.00s~600.00s | 0.00s | $\bigcirc$ |
| P8-38 | Arbitrary arrival current 1 | 0.0\% ${ }^{\sim} 300.0 \%$ (motor rated current) | 100.0\% | $\bigcirc$ |
| P8-39 | Arbitrary arrival current 1 width | 0.0\% ${ }^{\sim} 300.0 \%$ (motor rated current) | 0.0\% | $\bigcirc$ |
| P8-40 | Arbitrary arrival current 2 | 0.0\% ${ }^{\sim} 300.0 \%$ (motor rated current) | 100.0\% | 0 |
| P8-41 | Arbitrary arrival current 2 width | 0.0\% $\sim 300.0 \%$ (motor rated current) | 0.0\% | $\bigcirc$ |
| P8-42 | Timing function selection | 0:Invalid; 1: Valid | 0 | $\bigcirc$ |
| P8-43 | Timed runtime selection | 0 : P8-44 setting 1:VI setting 2:CI setting <br> 3: Keypad potentiometer setting Analogue input ranges correspond to P8-44 | 0 | $\bigcirc$ |
| P8-44 | Timed runtime | $0.0 \mathrm{Min} \sim 6500.0 \mathrm{Min}$ | 0.0Min | $\bigcirc$ |
| P8-45 | VI lower limit of input voltage protection value | 0.00V~P8-46 | 3.10 V | $\bigcirc$ |
| P8-46 | VI upper limit of input voltage protection value | P8-45~10.00V | 6.80 V | $\bigcirc$ |
| P8-47 | Module temperature reaches | $0^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C}$ | $75^{\circ} \mathrm{C}$ | $\bigcirc$ |
| P8-48 | Cooling fan control | 0 : Fan running during operation 1: Fans running all the time | 0 | $\bigcirc$ |


| Functional code | Name | Functio | scription | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P8-49 | Wake-up stress |  |  | 0 | $\bigcirc$ |
| P8-50 | Wake-up delay time | 0.0s | 0.0s | 0.0s | $\bigcirc$ |
| P8-51 | Dormancy frequency | $0.00 \mathrm{~Hz} \sim \mathrm{Max}$ | quency(P0-10) | 0.00 Hz | $\bigcirc$ |
| P8-52 | Dormancy delay time | 0.0s | 0.0s | 0.0s | $\bigcirc$ |
| P8-53 | Arrival time setting for this run | 0.0 Min | 0.0Min | 0.0Min | $\bigcirc$ |
| P9 Group Fault and Protection |  |  |  |  |  |
| P9-00 | Motor overload protection option | 0:Allowed; | 1: Prohibited | 1 | $\bigcirc$ |
| P9-01 | Motor overload protection gain | 0.20 | 0.00 | 1.00 | $\bigcirc$ |
| P9-02 | Motor overload warning factor |  |  | 80\% | $\bigcirc$ |
| P9-03 | Overvoltage stall gain |  |  | 10 | $\bigcirc$ |
| P9-04 | Overvoltage stall protection voltage | 120\% | 50\% | 130\% | $\bigcirc$ |
| P9-05 | Overcurrent stall gain |  |  | 20 | $\bigcirc$ |
| P9-06 | Overcurrent stall protection current | 100\% | 00\% | 120\% | $\bigcirc$ |
| P9-07 | Selection of power-on short-circuit protection to ground | 0:Invalid; | 1: Valid | 1 | $\bigcirc$ |
| P9-09 | Number of automatic faults reset |  |  | 0 | $\bigcirc$ |
| P9-10 | Fault DO action selection during automatic fault reset |  |  | 0 | $\bigcirc$ |
| P9-11 | Fault automatic reset interval | 0.1s | 0.0s | 1.0s | $\bigcirc$ |
| P9-12 | Input open phase protection selection | 0:Allowed; | 1: Prohibited | 1 | $\bigcirc$ |
| P9-13 | Output open phase protection selection | 0:Allowed; | 1: Prohibited | 1 | $\bigcirc$ |
| P9-14 | Motor overload protection selection | 0:Allowed; | 1: Prohibited | 1 | $\bigcirc$ |



| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| P9-17 | Frequency at the third (latest) fault | - | - | $\bullet$ |
| P9-18 | Currently the third (latest) fault | - | - | $\bullet$ |
| P9-19 | Busbar voltage of the third (latest) fault | - | - | $\bullet$ |
| P9-20 | Status of input terminals of the third (latest) fault | - | - | $\bullet$ |
| P9-21 | Status of output terminals of the third (latest) fault | - | - | - |
| P9-22 | Converter status of the third (latest) fault | - | - | $\bullet$ |
| P9-23 | Power-on time of the third (latest) fault | - | - | $\bullet$ |
| P9-24 | Running time of the third (latest) fault | - | - | $\bullet$ |
| P9-27 | Frequency of the second fault | - | - | $\bullet$ |
| P9-28 | Current of the second fault | - | - | $\bullet$ |
| P9-29 | Busbar voltage of the second fault | - | - | $\bullet$ |
| P9-30 | Status of input terminals of the second fault | - | - | $\bullet$ |
| P9-31 | Status of output terminals of the second fault | - | - | $\bullet$ |
| P9-32 | Converter status of the second fault | - | - | $\bullet$ |
| P9-33 | Power-on time of the second fault | - | - | $\bullet$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| P9-34 | Running time of the second fault | - | - | $\bullet$ |
| P9-37 | Frequency of the first fault | - | - | - |
| P9-38 | Current of the firs fault | - | - | $\bullet$ |
| P9-39 | Busbar voltage of the firs fault | - | - | $\bullet$ |
| P9-40 | Status of input terminals of the firs fault | - | - | $\bullet$ |
| P9-41 | Status of output terminals of the firs fault | - | - | $\bullet$ |
| P9-42 | Converter status of the firs fault | - | - | $\bullet$ |
| P9-43 | Power-on time of the firs fault | - | - | $\bullet$ |
| P9-44 | Running time of the firs fault | - | - | $\bullet$ |
| P9-47 | Selection of fault protection action mode 1 | 0: Stop freely <br> 1: Stop by stop method <br> 2: Keep running <br> Digit: Motor overload (Err11) <br> Tens: Input open phase (Err12) <br> Hundreds: Output open phase (Err13) <br> Thousands: External fault (Err15) <br> Ten Thousands: Communication abnormality (Err16) | 00000 | $\bigcirc$ |
| P9-48 | Selection of fault protection action mode 2 | Digit: <br> Encoder/PG card abnormality (Err20) <br> 0 : Stop freely <br> 1: Switch to V/F control, and stop as stop method; <br> 2: Switch to V/F control, and keep running Tens: <br> Converter hardware abnormality (Err 21) 0 : Stop freely <br> 1: Stop as stop method <br> Hundreds: Dormancy alarm (Err24), the same asP9-47 <br> Thousands: Motor overtemperature (Err25), the same a P9-47 <br> Ten Thousands: Running time arrival (Err26) the same as P9-47 | 10200 | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| P9-49 | Selection of fault protection action mode 3 | Digit: User defined fault 1(Err27) <br> 0 : Stop freely <br> 1: Stop as stop method <br> 2: Keep running <br> Tens: User defined fault 2 (Err 28) same as digit <br> Hundreds: Power on time arrival (Err 29) same as digit <br> Thousands: Drop of load <br> (Err 30) <br> 0: Stop freely <br> 1: Slow down and stop <br> 2: Reduces to 7\% of the rated motor frequency and continues to run, <br> automatically returning to the set frequency when the load is not dropped <br> Ten Thousands: Running PID Feedback lost <br> (Err 31) <br> Same as digit | 00000 | $\bigcirc$ |
| P9-50 | Selection of fault protection action mode 4 | Digit: Excessive speed deviation (Err 42) <br> 0 : Stop freely <br> 1: Stop as stop method <br> 2: Keep running <br> Tens: Motor overspeed (Err 43) same as digit <br> Hundreds: Initial location error (Err 51) same as digit <br> Thousands: Speed feedback error (Err 52) same as digit <br> Ten Thousands: Reserve | 00000 | $\bigcirc$ |
| P9-54 | Frequency methods selection for keep running in the event of a fault | 0 : Running at current operating frequency <br> 1: Operation at set frequency <br> 2: Running at the upper frequency limit <br> 3: Running at the lower frequency limit <br> 4: Running at abnormal standby frequency | 0 | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| P9-55 | Abnormal standby frequency | 60.0\%~100.0\% (100.0\% corresponding maximum frequency PO-10) | 100.0\% | $\bigcirc$ |
| P9-59 | Selection of instantaneous power failure mold | 0 : Invalid <br> 1: Slow down <br> 2: Slow down and stop | 0 | $\bigcirc$ |
| P9-61 | Judgement time of instantaneous outage voltage recovery | 0.00s~100.00s | 0.50s | $\bigcirc$ |
| P9-62 | Determine voltage of instantaneous power failure action | 60.0\% ${ }^{\text {100.0\% (standard busbar voltage) }}$ | 80.0\% | $\bigcirc$ |
| P9-63 | Load drop protection option | 0 : Invalid 1: Valid | 0 | $\bigcirc$ |
| P9-64 | Load drop detection level | 0.0~100.0\% | 10.0\% | $\bigcirc$ |
| P9-65 | Load drop detection time | 0.0~60.0s | 1.0s | $\bigcirc$ |
| P9-67 | Overspeed detection value | 0.0\% $\sim 50.0 \%$ (Max. frequency) | 20.0\% | $\bigcirc$ |
| P9-68 | Overspeed detection time | 0.0s~60.0s | 5.0s | $\bigcirc$ |
| P9-69 | Excessive speed deviation detection value | 0.0\% $\sim 50.0 \%$ (Max. frequency) | 20.0\% | $\bigcirc$ |
| P9-70 | Excessive speed deviation detection time | 0.0s~60.0s | 0.0s | $\bigcirc$ |
| PA Group PID Functions |  |  |  |  |
| PA-00 | Process PID setting sauce | 0:PA-01 setting <br> 1:VI setting <br> 2:Cl setting <br> 3: Keypad potentiometer setting <br> 4: High-speed pulse setting (X3) <br> 5: Communication setting <br> 6: multi-segment command setting | 0 | $\bigcirc$ |
| PA-01 | Process PID value setting | 0.0\%~100.0\% | 50.0\% | $\bigcirc$ |
| PA-02 | Process PID feedback source | $0:$ VI feedback <br> 1:Cl feedback <br> 2: Keypad potentiometer feedback <br> 3:VI-Cl feedback <br> 4: High-speed pulse feedback (X3) <br> 5: Communication feedback <br> 6:VI+Cl feedback <br> 7: MAX (\|VI|, |CI|) feedback <br> 8: MIN (\|VI|, |CI|) feedback | 0 | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| PA-03 | Process PID action direction | 0: Positive effect 1: Counteraction | 0 | $\bigcirc$ |
| PA-04 | Process PID setting- feedback range | 0~65535 | 1000 | $\bigcirc$ |
| PA-05 | Process PID proportional gain Kp1 | 0.0~100.0 | 10.0 | $\bigcirc$ |
| PA-06 | Process PID integration time Ti1 | 0.01s~10.00s | 0.80s | $\bigcirc$ |
| PA-07 | Process PID differential time Td1 | 0.000s~10.000s | 0.35s | $\bigcirc$ |
| PA-08 | Process PID reverse cut-off frequency | 0.00~Max. frequency | 0.00 Hz | $\bigcirc$ |
| PA-09 | Process PID deviation limit | 0.0\%~100.0\% | 0.0\% | $\bigcirc$ |
| PA-10 | Process PID differential limit | 0.00\% $100.00 \%$ | 0.50\% | $\bigcirc$ |
| PA-11 | Process PID given time of change | 0.00~650.00s | 5.00s | $\bigcirc$ |
| PA-12 | Process PID feedback filter time | 0.00~60.00s | 0.00s | $\bigcirc$ |
| PA-13 | Process PID output filter time coefficient | 0~100 | 100 | $\bigcirc$ |
| PA-14 | Reserve | - | - | $\bigcirc$ |
| PA-15 | Process PID proportional gain Kp2 | 0.0~100.0 | 5.0 | $\bigcirc$ |
| PA-16 | Process PID integration time Ti2 | 0.01s~10.00s | 2.00s | $\bigcirc$ |
| PA-17 | Process PID differential time Td2 | 0.000s~10.000s | 0.000s | $\bigcirc$ |
| PA-18 | Process PID parameter switching condition | 0 : No switching <br> 1: Switching via $X$ terminal <br> 2: Automatic switching according to deviation <br> 3: Automatic switching according to running frequency | 0 | $\bigcirc$ |
| PA-19 | Process PID parameter switching deviation 1 | 0.0\%~PA-20 | 20.0\% | $\bigcirc$ |
| PA-20 | Process PID parameter switching deviation 2 | PA-19~100.0\% | 80.0\% | $\bigcirc$ |
| PA-21 | Process PID initial value | 0.0\% $100.0 \%$ | 0.0\% | $\bigcirc$ |
| PA-22 | Process PID initial value holding time | 0.00~650.00s | 0.00s | $\bigcirc$ |
| PA-23 | Positive max. Value of two output deviations | 0.00\% $100.00 \%$ | 1.00\% | $\bigcirc$ |
| PA-24 | Reverse max. Value of two output deviations | 0.00\% $100.00 \%$ | 1.00\% | $\bigcirc$ |
| PA-25 | Process PID integral attribute | Digit: Integral separation <br> 0: Invalid 1: Valid <br> Tens: Does the integration stop when the output reaches the limit value? <br> 0 : Continue 1: Stop | 00 | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| PA-26 | Detection value of process PID feedback missing | 0.0\%: No judgement of feedback loss $0.1 \% \sim 100.0 \%$ | 0.0\% | $\bigcirc$ |
| PA-27 | Detection time of process PID feedback missing | 0.0s~20.0s | 0.0s | $\bigcirc$ |
| PA-28 | Process PID shutdown computing | 0: Shutdown without computing <br> 1: Computing during shutdown | 0 | $\bigcirc$ |
| Pb Group Pendulum Frequency, Fixed Length and Counting |  |  |  |  |
| $\mathrm{Pb}-00$ | Pendulum frequency setting method | 0 : Related to the central frequency <br> 1: Related to Max. frequency | 0 | $\bigcirc$ |
| Pb-01 | Pendulum frequency amplitude | 0.0\% $100.0 \%$ | 0.0\% | $\bigcirc$ |
| $\mathrm{Pb}-02$ | Surge frequency amplitude | 0.0\% ${ }^{\sim} 50.0 \%$ | 0.0\% | $\bigcirc$ |
| Pb-03 | Pendulum frequency period | 0.1s~3000.0s | 10.0s | $\bigcirc$ |
| $\mathrm{Pb}-04$ | Triangular wave rises time of the pendulum frequency | 0.1\% $100.0 \%$ | 50.0\% | $\bigcirc$ |
| Pb-05 | Set length | Om~65535m | 1000m | $\bigcirc$ |
| Pb-06 | Actual length | Om~65535m | 0m | $\bigcirc$ |
| Pb-07 | Pulses per meter | 0.1~6553.5 | 100.0 | $\bigcirc$ |
| Pb-08 | Set count value | 1~65535 | 1000 | $\bigcirc$ |
| Pb-09 | Specify count value | 1~65535 | 1000 | $\bigcirc$ |
| PC Group Multi-segment Command and PLC Program |  |  |  |  |
| PC-00 | Multi-segment command 0 | -100.0\%~100.0\% | 0.0\% | $\bigcirc$ |
| PC-01 | Multi-segment command 1 | -100.0\%~100.0\% | 0.0\% | $\bigcirc$ |
| PC-02 | Multi-segment command 2 | -100.0\%~100.0\% | 0.0\% | $\bigcirc$ |
| PC-03 | Multi-segment command 3 | -100.0\%~100.0\% | 0.0\% | $\bigcirc$ |
| PC-04 | Multi-segment command 4 | -100.0\%~100.0\% | 0.0\% | $\bigcirc$ |
| PC-05 | Multi-segment command 5 | -100.0\%~100.0\% | 0.0\% |  |
| PC-06 | Multi-segment command 6 | -100.0\%~100.0\% | 0.0\% | 0 |
| PC-07 | Multi-segment command 7 | -100.0\%~100.0\% | 0.0\% | $\bigcirc$ |
| PC-08 | Multi-segment command 8 | -100.0\%~100.0\% | 0.0\% | $\bigcirc$ |
| PC-09 | Multi-segment command 9 | -100.0\%~100.0\% | 0.0\% | $\bigcirc$ |
| PC-10 | Multi-segment command 10 | -100.0\% ${ }^{\sim} 100.0 \%$ | 0.0\% | $\bigcirc$ |
| PC-11 | Multi-segment command 11 | -100.0\%~100.0\% | 0.0\% | 0 |
| PC-12 | Multi-segment command 12 | -100.0\% ${ }^{\sim} 100.0 \%$ | 0.0\% | $\bigcirc$ |
| PC-13 | Multi-segment command 13 | -100.0\%~100.0\% | 0.0\% | 0 |
| PC-14 | Multi-segment command 14 | -100.0\%~100.0\% | 0.0\% | $\bigcirc$ |
| PC-15 | Multi-segment command 15 | -100.0\% ${ }^{\sim} 100.0 \%$ | 0.0\% | 0 |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| PC-16 | PLC program run mode selection | 0 : Stop at the end of a single run <br> 1: Keep the final value at the end of a single run <br> 2: Keep cycling | 0 | $\bigcirc$ |
| PC-17 | Memory selection of PLC program operation power off | Digit: Memory selection at power off <br> 0 : No memory at power off <br> 1: Memory at power off <br> Tens: Stop memory selection <br> 0: No memory at stop <br> 1: Memory at stop | 00 | $\bigcirc$ |
| PC-18 | PLC program runtime for paragraph 0 | 0.0s (h)~6553.5s (h) | 0.0s (h) | $\bigcirc$ |
| PC-19 | Selection of acceleration and deceleration times in paragraph 0 of the PLC program | 0~3 | 0 | $\bigcirc$ |
| PC-20 | PLC program runtime for paragraph 1 | 0.0s (h)~6553.5s (h) | 0.0s (h) | $\bigcirc$ |
| PC-21 | Selection of acceleration and deceleration times in paragraph 1 of the PLC program | $0 \sim 3$ | 0 | $\bigcirc$ |
| PC-22 | PLC program runtime for paragraph 2 | 0.0s (h)~6553.5s (h) | 0.0s (h) | $\bigcirc$ |
| PC-23 | Selection of acceleration and deceleration times in paragraph 2 of the PLC program | $0 \sim 3$ | 0 | $\bigcirc$ |
| PC-24 | PLC program runtime for paragraph 3 | 0.0s (h)~6553.5s (h) | 0.0s (h) | $\bigcirc$ |
| PC-25 | Selection of acceleration and deceleration times in paragraph 3 of the PLC program | $0 \sim 3$ | 0 | $\bigcirc$ |
| PC-26 | PLC program runtime for paragraph 4 | 0.0s (h)~6553.5s (h) | 0.0s (h) | $\bigcirc$ |
| PC-27 | Selection of acceleration and deceleration times in paragraph 4 of the PLC program | 0~3 | 0 | $\bigcirc$ |
| PC-28 | PLC program runtime for paragraph 5 | 0.0s (h)~6553.5s (h) | 0.0s (h) | $\bigcirc$ |
| PC-29 | Selection of acceleration and deceleration times in paragraph 5 of the PLC program | 0~3 | 0 | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| PC-30 | PLC program runtime for paragraph 6 | 0.0s (h)~6553.5s (h) | 0.0s (h) | $\bigcirc$ |
| PC-31 | Selection of acceleration and deceleration times in paragraph 6 of the PLC program | 0~3 | 0 | $\bigcirc$ |
| PC-32 | PLC program runtime for paragraph 7 | 0.0s (h)~6553.5s (h) | 0.0s (h) | $\bigcirc$ |
| PC-33 | Selection of acceleration and deceleration times in paragraph 7 of the PLC program | 0~3 | 0 | $\bigcirc$ |
| PC-34 | PLC program runtime for paragraph 8 | 0.0s (h)~6553.5s (h) | 0.0s (h) | $\bigcirc$ |
| PC-35 | Selection of acceleration and deceleration times in paragraph 8 of the PLC program | $0 \sim 3$ | 0 | $\bigcirc$ |
| PC-36 | PLC program runtime for paragraph 9 | 0.0s (h)~6553.5s (h) | 0.0s (h) | $\bigcirc$ |
| PC-37 | Selection of acceleration and deceleration times in paragraph9 of the PLC program | 0~3 | 0 | $\bigcirc$ |
| PC-38 | PLC program runtime for paragraph 10 | 0.0s (h)~6553.5s (h) | 0.0s (h) | $\bigcirc$ |
| PC-39 | Selection of acceleration and deceleration times in paragraph 10 of the PLC program | 0~3 | 0 | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| PC-40 | PLC program runtime for paragraph 11 | 0.0s (h)~6553.5s (h) | 0.0s (h) | $\bigcirc$ |
| PC-41 | Selection of acceleration and deceleration times in paragraph 11 of the PLC program | 0~3 | 0 | $\bigcirc$ |
| PC-42 | PLC program runtime for paragraph 12 | 0.0s (h)~6553.5s (h) | 0.0s (h) | $\bigcirc$ |
| PC-43 | Selection of acceleration and deceleration times in paragraph 12 of the PLC program | 0~3 | 0 | $\bigcirc$ |
| PC-44 | PLC program runtime for paragraph 13 | 0.0s (h)~6553.5s (h) | 0.0s (h) | $\bigcirc$ |
| PC-45 | Selection of acceleration and deceleration times in paragraph 13 of the PLC program | $0 \sim 3$ | 0 | $\bigcirc$ |
| PC-46 | PLC program runtime for paragraph 14 | 0.0s (h)~6553.5s (h) | 0.0s (h) | $\bigcirc$ |
| PC-47 | Selection of acceleration and deceleration times in paragraph 14 of the PLC program | 0~3 | 0 | $\bigcirc$ |
| PC-48 | PLC program runtime for paragraph 15 | 0.0s (h)~6553.5s (h) | 0.0s (h) | $\bigcirc$ |
| PC-49 | Selection of acceleration and deceleration times in paragraph 15 of the PLC program | 0~3 | 0 | $\bigcirc$ |
| PC-50 | PLC program running time unit selection | $\begin{gathered} \hline \text { 0: s (second) } \\ \text { 1:h (hour) } \end{gathered}$ | 0 | $\bigcirc$ |
| PC-51 | Given method of multi-segment command 0 | 0: Function code PC-00 given <br> 1:VI given <br> 2:Cl given <br> 3: Reserve <br> 4: High-speed pulse (X3) given <br> 5: Process PID given <br> 6: Set frequency (PO-08) given, UP/DOWN modifiable | 0 | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| PD Group Communication Parameter Groups |  |  |  |  |
| Pd-00 | Baud rate | Digit: MODBUS 0:300BPS 2:1200BPS 1:600BPS 4:2400BPS 6:19200BPS 8:57600BPS 7ens: ProPibus-DP 9:115200BPS 0:115200BPs 1:208300BPs 2:256000BPs 3:512000Bps Hundreds: Reserve Thousands: CAN link Baud rate 0:20 1:50 $2: 100$ $3: 125$ $4: 250$ $5: 500$ $6: 1 \mathrm{M}$ | 5005 | $\bigcirc$ |
| Pd-01 | Data format | $\begin{gathered} \text { 0: No calibration(8-N-2) } \\ \text { 1: Even checking(8-E-1) } \\ \text { 2: Odd checking (8-O-1) } \\ \text { 3:8-N-1 } \end{gathered}$ | 0 | $\bigcirc$ |
| Pd-02 | Home address | $1 \sim 247,0$ is the broadcast address | 1 | $\bigcirc$ |
| Pd-03 | Response delay | 0ms~20ms | 2 | $\bigcirc$ |
| Pd-04 | Communication timeout | 0.0 (invalid), 0.1s~60.0s | 0.0 | $\bigcirc$ |
| Pd-05 | Data transfer format selection | Digit: MODBUS <br> 0: Non-standard MODBUS protocol <br> 1: Standard MODBUS protocol <br> Tens: Profibus-DP <br> 0: PPO1 format <br> 1: PPO2 format <br> 2: PPO3 format <br> 3: PPO5 format | 31 | $\bigcirc$ |
| Pd-06 | Communication reading current resolution | $\begin{gathered} 0: 0.01 \mathrm{~A} \\ 1: 0.1 \mathrm{~A} \end{gathered}$ | 0 | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| PE Group User Customized Function Codes |  |  |  |  |
| PE-00 | User function code 0 |  |  | $\bigcirc$ |
| PE-01 | User function code 1 |  |  | $\bigcirc$ |
| PE-02 | User function code 2 |  |  | $\bigcirc$ |
| PE-03 | User function code 3 |  |  | $\bigcirc$ |
| PE-04 | User function code 4 |  |  | $\bigcirc$ |
| PE-05 | User function code 5 |  |  | $\bigcirc$ |
| PE-06 | User function code 6 |  |  | $\bigcirc$ |
| PE-07 | User function code 7 |  |  | $\bigcirc$ |
| PE-08 | User function code 8 |  |  | $\bigcirc$ |
| PE-09 | User function code 9 |  |  | $\bigcirc$ |
| PE-10 | User function code 10 |  |  | $\bigcirc$ |
| PE-11 | User function code 11 |  |  | $\bigcirc$ |
| PE-12 | User function code 12 |  |  | $\bigcirc$ |
| PE-13 | User function code 13 |  |  | $\bigcirc$ |
| PE-14 | User function code 14 |  |  | $\bigcirc$ |
| PE-15 | User function code 15 |  |  | $\bigcirc$ |
| PE-16 | User function code 16 |  |  | $\bigcirc$ |
| PE-17 | User function code 17 |  |  | $\bigcirc$ |
| PE-18 | User function code 18 |  |  | $\bigcirc$ |
| PE-19 | User function code 19 |  |  | $\bigcirc$ |
| PE-20 | User function code 20 |  |  | $\bigcirc$ |
| PE-21 | User function code 21 |  |  | $\bigcirc$ |
| PE-22 | User function code 22 |  |  | $\bigcirc$ |
| PE-23 | User function code 23 |  |  | $\bigcirc$ |
| PE-24 | User function code 24 |  |  | $\bigcirc$ |
| PE-25 | User function code 25 |  |  | $\bigcirc$ |
| PE-26 | User function code 26 |  |  | $\bigcirc$ |
| PE-27 | User function code 27 |  |  | $\bigcirc$ |
| PE-28 | User function code 28 |  |  | $\bigcirc$ |
| PE-29 | User function code 29 |  |  | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| PP Group Functional Code Management |  |  |  |  |
| PP-00 | User Password | 0~65535 | 0 | © |
| PP-01 | Parameter initialization | 0: No action <br> 01: Restore the factory parameters, but not the motor parameters <br> 02: Clear the fault record information <br> 04: Reserve <br> 501: Reserve | 0 | $\bigcirc$ |
| PP-02 | Function parameter group display selection | Digit: U group display selection <br> 0 : No display <br> 1: Display <br> Tens: A group display selection <br> 0 : No display <br> 1: Display | 11 | $\bigcirc$ |
| PP-03 | Personalized parameter group display selection | Digit: User customized parameter group display selection <br> 0 : No display <br> 1: Display <br> Tens: User change parameter group display selection <br> 0 : No display <br> 1: Display | 00 | $\bigcirc$ |
| PP-04 | Modify property of function code | 0: Modifiable; 1: non-modifiable | 0 | $\bigcirc$ |
| PP-05 | Application parameter macro | 0 : Invalid <br> 1: Water supply at constant pressure | 0 | $\bigcirc$ |
| A0 Group Torque Control Parameters |  |  |  |  |
| A0-00 | Speed/Torque control method selection | 0 : Speed control <br> 1: Torque control | 0 | ( ) |
| A0-01 | Torque setting source selection under torque control method | 0 : Digital setting source (A0-03) <br> 1:VI setting source <br> 2:Cl setting source <br> 3: Keypad potentiometer setting source <br> 4: High-speed pulse (X3) setting source <br> 5: Communication setting source <br> 6: MIN (VI, CI) setting source <br> 7: MAX (VI, CI) setting source <br> (Full scope of items1-7 is corresponding to A0-03 digital setting value) | 0 | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| A0-03 | Digital setting torque under torque control method | -200.0\% ${ }^{\text {200.0\% }}$ | 150.0\% | $\bigcirc$ |
| A0-05 | Forward max. Frequency of torque control | $0.00 \mathrm{~Hz} \sim \mathrm{Max}$. frequency | 50.00 Hz | 0 |
| A0-06 | Reverse max. Frequency of torque control | $0.00 \mathrm{~Hz}^{\sim} \mathrm{Max}$. frequency | 50.00 Hz | $\bigcirc$ |
| A0-07 | Torque controlled acceleration time | 0.00s~65000s | 0.00s | $\bigcirc$ |
| A0-08 | Torque controlled deceleration time | 0.00s ${ }^{\text {2 } 65000 s}$ | 0.00s | $\bigcirc$ |
| A2 Group Parameters of Second Motor |  |  |  |  |
| A2-00 | Motor type selection | 0: Common asynchronous motor <br> 1: Frequency conversion asynchronous motor | 0 | © |
| A2-01 | Motor rated power | 0.1kW~1000.0kW | Model setting | © |
| A2-02 | Motor rated voltage | 1V~2000V | Model setting | © |
| A2-03 | Motor rated current | $\begin{gathered} \hline 0.01 A^{\sim} 655.35 \mathrm{~A} \\ \text { (Converter power<=55kW) } \\ 0.1 A^{\sim} \sim 5533.5 \mathrm{~A} \\ \text { (Converter power>55kW) } \end{gathered}$ | Model setting | (0) |
| A2-04 | Motor rated frequency | $0.01 \mathrm{~Hz} \sim$ Max. frequency | Model setting | © |
| A2-05 | Motor rated speed | $1 \mathrm{rpm} \sim 65535 \mathrm{rpm}$ | Model setting | () |
| A2-06 | Asynchronous motor stator resistance | $0.001 \Omega^{\sim} \sim 55.535 \Omega$ (Converter power<=55kW) $0.0001 \Omega^{\sim} 6.5535 \Omega$ (Converter power>55kW) | Model setting | © |
| A2-07 | Asynchronous motor rotor resistance | $0.001 \Omega^{\sim} 65.535 \Omega$ (Converter power<=55kW) $0.0001 \Omega^{\sim} 6.5535 \Omega$ (Converter power>55kW) | Model setting | © |
| A2-08 | Asynchronous motor leakage inductance | $\begin{gathered} \hline 0.01 \mathrm{mH}^{\sim} 655.35 \mathrm{mH} \\ \text { (Converter power<=55kW) } \\ 0.001 \mathrm{mH}^{\sim} 65.535 \mathrm{mH} \\ \text { (Converter power>55kW) } \end{gathered}$ | Model setting | (0) |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| A2-09 | Asynchronous motor mutual inductance resistance | $0.1 \mathrm{mH}^{\sim} 6553.5 \mathrm{mH}$ <br> (Converter power<=55kW) <br> $0.01 \mathrm{mH}^{\sim} 655.35 \mathrm{mH}$ <br> (Converter power>55kW) | Model setting | © |
| A2-10 | Asynchronous motor unload current | $\begin{gathered} 0.01 \mathrm{~A}^{\sim} \mathrm{A} 2-03 \\ \text { (Converter power <=55kW) } \\ 0.1 \mathrm{~A}^{\sim} \text { A2-03 } \\ \text { (Converter power>55kW) } \end{gathered}$ | Model setting | ( |
| A2-27 | Number of encoder wires | 1~65535 | 2500 | () |
| A2-28 | Encoder type | 0 : ABZ incremental encoder <br> 1: UVW incremental encoder <br> 2: Rotary transformer <br> 3: Sine and cosine encoders <br> 4: Wire-saving UVW encoder | 0 | ( ) |
| A2-29 | Speed feedback PG selection | 0: Local PG 1: Reserve 2: High-speed pulse (X3) | 0 | © |
| A2-30 | $A B$ phase sequence of $A B Z$ incremental encoder | 0: Forward <br> 1: Reverse | 0 | © |
| A2-31 | Encoder mounting angle | 0.0~359.9 ${ }^{\circ}$ | $0.0^{\circ}$ | ( |
| A2-32 | UVW phase sequence of UVW encoder | 0: Forward <br> 1: Reverse | 0 | ( ) |
| A2-33 | UVW Encoder offset angle | 0.0~359.9 ${ }^{\circ}$ | $0.0^{\circ}$ | © |
| A2-34 | Number of pole pairs of resolvers | 1~65535 | 1 | ( |
| A2-36 | Speed feedback PG disconnection detection time | $\begin{gathered} \text { 0.0: No action } \\ 0.1 \mathrm{~s}^{\sim} 10.0 \mathrm{~s} \end{gathered}$ | 0.0 | ( ) |
| A2-37 | Self-learning options of the second motor | 0 : No action <br> 1: Static self-learning of asynchronous motor 1 <br> 2: Complete self-learning of asynchronous motor <br> 3: Static self-learning of asynchronous motor 2 | 0 | ( ) |
| A2-38 | Speed loop proportional gain 1 | 1~100 | 30 | $\bigcirc$ |
| A2-39 | Speed loop integration time 1 | 0.01s~10.00s | 0.50s | $\bigcirc$ |
| A2-40 | Switching frequency1 | 0.00~A2-43 | 5.00 Hz | $\bigcirc$ |
| A2-41 | Speed loop proportional gain 2 | 1~100 | 20 | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| A2-42 | Speed loop integration time 2 | 0.01s~10.00s | 1.00s | $\bigcirc$ |
| A2-43 | Switching frequency 2 | A2-40~Max. frequency | 10.00 Hz | $\bigcirc$ |
| A2-44 | Vector controlled differential gain | 50\%~200\% | 100\% | $\bigcirc$ |
| A2-45 | SVC torque filtering constant | 1-31 | 28 | $\bigcirc$ |
| A2-46 | Vector controlled overexcitation gain | 0~200 | 64 | $\bigcirc$ |
| A2-47 | Torque upper limit source under vector control method | 0: A2-48 setting <br> 1:VI <br> 2:Cl <br> 3: Keypad potentiometer <br> 4: High-speed pulse <br> 5: Communication given $\begin{aligned} & \text { 6: MIN (VI, CI) } \\ & \text { 7:MAX (VI, CI) } \end{aligned}$ <br> Note: The full range of options 1-7 is correspond to A2-48 settings | 0 | $\bigcirc$ |
| A2-48 | Torque upper limit digital setting under vector control method | 0.0\%~200.0\% | 150.0\% | $\bigcirc$ |
| A2-51 | Excitation regulation proportional gain | 0~20000 | 2000 | $\bigcirc$ |
| A2-52 | Excitation regulation integral gain | 0~20000 | 1300 | $\bigcirc$ |
| A2-53 | Torque regulation proportional gain | 0~20000 | 2000 | $\bigcirc$ |
| A2-54 | Torque regulation integral gain | 0~20000 | 1300 | $\bigcirc$ |
| A2-55 | Speed loop integral property | Digit: Integral separation <br> 0 : Invalid <br> 1: Valid | 0 | $\bigcirc$ |
| A2-61 | Control method of the second motor | 0: without vector control (SVC) <br> 1: with vector control (FVC) <br> 2: V/F control | 0 | $\bigcirc$ |
| A2-62 | Acceleration and deceleration times of the second motor | 0 : Same as the first motor <br> 1: Acceleration and deceleration 1 <br> 2: Acceleration and deceleration 2 | 0 | $\bigcirc$ |
| A2-63 | Torque boost of the second motor | 0.0\%: Auto-torque $0.1 \% \sim 30.0 \%$ | Model setting | $\bigcirc$ |


| Functional code | Name | Function Description | Default Value | Change |
| :---: | :---: | :---: | :---: | :---: |
| A5 Group Control Optimization Parameters |  |  |  |  |
| A5-00 | DPWM switching upper frequency | $0.00 \mathrm{~Hz} \sim$ P0.10 | 12.00 Hz | $\bigcirc$ |
| A5-01 | PWM Modulation method | 0 : Asynchronous modulation <br> 1: Synchronous modulation | 0 | $\bigcirc$ |
| A5-02 | dead band compensation mode selection | 0: No compensation <br> 1: Compensation mode | 1 | 0 |
| A5-03 | Random PWM depth | 0: Invalid of random PWM 1~10: Random depth of PWM carrier frequency | 0 | 0 |
| A5-04 | Fast current limit enables | 0 : non-enabling <br> 1: Enabling | 1 | $\bigcirc$ |
| A5-05 | Current detection compensation | 0~100 | 5 | $\bigcirc$ |
| A5-06 | Undervoltage point setting | 60.0\% ${ }^{\text {~ }} 140.0 \%$ | 100.0\% | $\bigcirc$ |
| A5-07 | SVC optimization mode selection | $1^{\sim} 2$ 1: Optimization mode 1 2: Optimization mode 2 | 1 | $\bigcirc$ |
| A5-08 | Dead time adjustment | 100\%~200\% | 150\% | $\bigcirc$ |

Summary Table of Monitoring Parameters

| Function code | Name | Min. unit |
| :---: | :---: | :---: |
| U0 Group Basic Monitoring Parameters |  |  |
| U0-00 | Running frequency (Hz) | 0.01 Hz |
| U0-01 | Setting frequency (Hz) | 0.01 Hz |
| U0-02 | Busbar voltage(V) | 0.1 V |
| U0-03 | Output voltage(V) | 1 V |
| U0-04 | Output current(A) | 0.01 A |
| U0-05 | Output power(kW) | 0.1 kW |
| U0-06 | Output torque (\%) | $0.1 \%$ |
| U0-07 | X terminal input status | 1 |
| U0-08 | Terminal output status | 1 |
| U0-09 | VI voltage(V) | 0.01 V |
| U0-10 | CI voltage(V) | 0.01 V |
| U0-11 | Keypad potentiometer voltage (V) | 0.01 V |
| U0-12 | Counting Value | 1 |
| U0-13 | Length value | 1 |
| U0-14 | Load speed display | 0.001 krpm |
| U0-15 | Process PID setting | 1 |
| U0-16 | Process PID feedback | 1 |
| U0-17 | PLC stage | 1 |


| Function code | Name | Min. unit |
| :---: | :---: | :---: |
| U0-18 | Input pulse frequency (Hz) | 0.01 kHz |
| U0-19 | Feedback speed (unit 0.1Hz) | 0.1 Hz |
| U0-20 | Remaining running time | 0.1 Min |
| U0-21 | VI pre-calibration voltage | 0.001V |
| U0-22 | Cl pre-calibration voltage | 0.001V |
| U0-23 | Keypad potentiometer pre-calibration voltage | 0.001V |
| U0-24 | Line speed | 1m/Min |
| U0-25 | Current power on time | 1Min |
| U0-26 | Current running time | 0.1 Min |
| U0-27 | Input pulse frequency | 1Hz |
| U0-28 | Communication setting value | 0.01\% |
| U0-29 | Encoder feedback speed | 0.01 Hz |
| U0-30 | Mains frequency X Display | 0.01 Hz |
| U0-31 | Mains frequency Y Display | 0.01 Hz |
| U0-32 | View any memory address value | 1 |
| U0-33 | Reserve |  |
| U0-34 | Motor temperature value | $1{ }^{\circ} \mathrm{C}$ |
| U0-35 | Target torque (\%) | 0.1\% |
| U0-36 | Rotation position | 1 |
| U0-37 | Power factor angle | $0.1^{\circ}$ |
| U0-38 | ABZ position | 1 |
| U0-39 | VF separate target voltage | 1V |
| U0-40 | VF separate output voltage | 1V |
| U0-41 | Visual display of input X terminal status | 1 |
| U0-42 | Visual display of output terminal status | 1 |
| U0-43 | Visual display of the X function status 1 (function 01-function 40) | 1 |
| U0-44 | Visual display of the X function status 2 (function 41-function 80) | 1 |
| U0-59 | Setting frequency (\%) | 0.01\% |
| U0-60 | Running frequency (\%) | 0.01\% |
| U0-61 | Converter status | 1 |

## Chapter V Fault Diagnosis and Countermeasures

The SCMOD converter has 35 warning messages and protection functions. In case of a fault, the protection functions will be act, the converter will stop output, the fault relay will be act and the fault code will be displayed on the converter. Before seeking service, the user should follow the instructions in this section to carry out a self-check, analyses the cause of the fault and find a solution. If the following causes cannot be solved, please seek technical support from your converter dealer or our after-service department.

| Fault Name | Inverter Unit Protection |
| :---: | :---: |
| Display of Operation Keypad | Err01 |
| Troubleshooting | 1.Short circuit in the output circuit of the frequency converter <br> 2.Excessively long wiring of motor and converter 3. Module overheats <br> 4.Loose wiring inside the converter <br> 5. Main control board abnormality <br> 6.Driver board abnormality <br> 7. Converter module abnormality |
| Troubleshooting response | 1.Troubleshooting of external faults <br> 2. Addition of reactor or output filter <br> 3.Check whether the air duct is blocked; Whether the fan works normally and eliminate the existing problems. 4.Plug in all the connection cables 5.Seeking technical support |
| Fault Name | Accelerated Overcurrent |
| Display of Operation Keypad | Err02 |
| Troubleshooting | 1.Ground or short circuit in the output circuit of the frequency converter <br> 2.The control method is vector control and no parameter identification is performed <br> 3.Too short of acceleration time <br> 4. Manual torque boost or inappropriate V/F curve <br> 5.Low voltage 6 . Start the rotating motor <br> 7. Sudden load during acceleration <br> 8. The selected converter is too small |
| Troubleshooting response | 1.Troubleshooting of external faults 2 . Identify the motor parameter <br> 3.Increase acceleration time 4. Adjustment of the manual boost torque or $\mathrm{V} / \mathrm{F}$ curve <br> 5.Adjust the voltage to the normal range 6. Cancellation of sudden load <br> 7.Select speed tracking start or wait for the motor to stop before starting <br> 8. Choose a frequency converter with a higher power rating |
| Fault Name | Deceleration Overcurrent |
| Display of Operation Keypad | Err03 |
| Troubleshooting | 1.Ground or short circuit in the output circuit of the frequency converter <br> 2.The control method is vector control and no parameter identification is performed <br> 3.Too short of deceleration 4. Low voltage <br> 5.Sudden load during deceleration 6 . No additional brake unit and brake resistor |
| Troubleshooting response | 1.Troubleshooting of external faults 2. Identify the motor parameter <br> 3.Increase deceleration time <br> 4. Adjust the voltage to the normal range <br> 5. Cancellation of sudden load <br> 6. Addition of brake unit and resistor |


| Fault Name | Constant Speed Overcurrent |
| :---: | :---: |
| Display of Operation Keypad | Err04 |
| Troubleshooting | 1.Ground or short circuit in the output circuit of the frequency converter <br> 2.The control method is vector control and no parameter identification is performed <br> 3.Low voltage 4. Is there any sudden loading during operation <br> 5.The selected converter is too small |
| Troubleshooting response | 1.Troubleshooting of external faults 2. Identify the motor parameter <br> 3.Adjust the voltage to the normal range 4. Cancellation of sudden load 5. Choose a frequency converter with a higher power rating |
| Fault Name | Acceleration Overvoltage |
| Display of Operation Keypad | Err05 |
| Troubleshooting | 1.High input voltage <br> 2.There is an external force to drag the motor to run during acceleration <br> 3.Too short of acceleration time 4.No additional brake unit and brake resistor |
| Troubleshooting response | 1.Adjust the voltage to the normal range <br> 2. Cancel the additional power or install a braking resistor <br> 3.Increase the acceleration time 4.Add brake unit and resistor |
| Fault Name | Deceleration Overvoltage |
| Display of Operation Keypad | Err06 |
| Troubleshooting | 1.High input voltage <br> 2.There is an external force to drag the motor to run during deceleration <br> 3.Too short of deceleration time 4.No additional brake unit and brake resistor |
| Troubleshooting response | 1.Adjust the voltage to the normal range <br> 2. Cancel the additional power or install a braking resistor <br> 3.Increase the deceleration time 4.Add brake unit and resistor |
| Fault Name | Constant Speed Overvoltage |
| Display of Operation Keypad | Err07 |
| Troubleshooting | 1.High input voltage <br> 2.There is an external force to drag the motor to run during operation |
| Troubleshooting response | 1.Adjust the voltage to the normal range <br> 2. Cancel the additional power or install a braking resistor |
| Fault Name | Buffer resistor overload |
| Display of Operation Keypad | Err08 |
| Troubleshooting | The input voltage is not within the range specified in the specification |
| Troubleshooting response | Adjusting the voltage to the range required by the specification |
| Fault Name | Undervoltage Fault |
| Display of Operation Keypad | Err09 |
| Troubleshooting | 1.Instantaneous power failure 2 . The voltage at the input of the frequency converter is not within the range required by the specification |
| Troubleshooting response | 1.Reset fault 2.Adjust voltage to normal range 3.Seeking technical support |


| Fault Name | Frequency Converter Overload |
| :---: | :---: |
| Display of Operation Keypad | Err10 |
| Troubleshooting | 1. Whether the load is too large or the motor is blocked 2.The selected converter is small |
| Troubleshooting response | 1.Reduce the load and check the condition of the motor and machinery <br> 2.Choose a frequency converter with a higher power rating |
| Fault Name | Motor Overload |
| Display of Operation Keypad | Err11 |
| Troubleshooting | 1.Is the motor protection parameter P9-01 setting appropriate? <br> 2. Whether the load is too large or the motor is blocked 3.The selected converter is small |
| Troubleshooting response | 1.Set the parameter correctly <br> 2.Reduce the load and check the condition of the motor and machinery <br> 3. Choose a frequency converter with a higher power rating |
| Fault Name | Input Open phase |
| Display of Operation Keypad | Err12 |
| Troubleshooting | 1.Three-phase input power source is abnormal 2. Abnormal driver board <br> 3.Abnormal lightning protection panel 4.Abnormal main control board |
| Troubleshooting response | 1.Check and eliminate the problems in the external circuit. Abnormal driver board 2.Seeking technical support |
| Fault Name | Output Open phase |
| Display of Operation Keypad | Err13 |
| Troubleshooting | 1.The lead from the converter to the motor is not working properly <br> 2.Unbalanced three-phase output of the converter when the motor is running 3.Abnormal driver board 4.Module exception |
| Troubleshooting response | 1.Troubleshooting the external faults <br> 2.Check whether the three-phase winding of the motor is normal and troubleshoot it. |


| Fault Name | Module overheating |
| :---: | :---: |
| Display of Operation Keypad | Err14 |
| Troubleshooting | 1.High ambient temperature 2.Blocked air duct <br> 3.Damaged fan 4.Damaged module thermistor <br> 2.Damaged inverter module |
| Troubleshooting response | 1.Reduced the ambient temperature |
|  | 2.Cleaning the air ducts 3.Replace the fan <br> Fault Name |
| 4.Replace the thermistor 5.Replace the inverter module |  |


| Fault Name | EEPROM Read/Write Fault |
| :---: | :---: |
| Display of Operation Keypad | Err21 |
| Troubleshooting | EEPROM chip damaged |
| Troubleshooting response | Replace the main control board |
| Fault Name | Converter Hardware Faults |
| Display of Operation Keypad | Err22 |
| Troubleshooting | 1.Presence of overvoltage 2.Presence of overcurrent |
| Troubleshooting response | 1.Treat as an overvoltage fault <br> 2.Treat as an overcurrent fault; in most cases it is a hardware overvoltage fault that causes the Err22 alarm |
| Fault Name | Short circuit to ground fault |
| Display of Operation Keypad | Err23 |
| Troubleshooting | Motor short-circuited to ground |
| Troubleshooting response | Replace the cable or motor |
| Fault Name | Dormant alarm |
| Display of Operation Keypad | A24 |
| Troubleshooting | The frequency converter is in a dormant state |
| Troubleshooting response | The pump pressure is below the wake-up pressure and the converter automatically exits the dormant state and enters normal operation |
| Fault Name | Cumulative Running Time Reaches Fault |
| Display of Operation Keypad | A26 |
| Troubleshooting | Cumulative running time reaches the setting value |
| Troubleshooting response | Clear the recorded information by using the parameter initialization function |
| Fault Name | User Defined Fault 1 |
| Display of Operation Keypad | Err27 |
| Troubleshooting | Input the signal user defined fault 1 via digital input terminal X |
| Troubleshooting response | Reset running |
| Fault Name | User Defined Fault 2 |
| Display of Operation Keypad | Err28 |
| Troubleshooting | Input the signal user defined fault 2 via digital input terminal X |
| Troubleshooting response | Reset running |
| Fault Name | Cumulative Power-on Time Reaches Fault |
| Display of Operation Keypad | Err29 |
| Troubleshooting | Cumulative power-on time reaches setting value |
| Troubleshooting response | Clear the recorded information by using the parameter initialization function |
| Fault Name | Dropped Load Fault |
| Display of Operation Keypad | Err30 |
| Troubleshooting | The converter operating current less than P9-64 |
| Troubleshooting response | Check that the load is disengaged and that the P9-64 and P9-65 parameters are set in accordance with the actual operating conditions |
| Fault Name | PID Feedback Loss Fault at Runtime |
| Display of Operation Keypad | Err31 |
| Troubleshooting | PID feedback less than PA-26 setting value |
| Troubleshooting response | Check for an open or damage of PID feedback signal or set PA-26 to a suitable value |


| Fault Name | Wave-by-wave Current Limiting Fault |
| :---: | :---: |
| Display of Operation | Err40 |
| Troubleshooting | 1.Whether the load is too large or the motor is blocked 2.The converter selected is small |
| Troubleshooting response | 1.Reduce the load and check the condition of the motor and machinery 2. Choose a frequency converter with a higher power rating |
| Fault Name | Fault in Switching Motor During Operation |
| Display of Operation | Err41 |
| Troubleshooting | Change of current motor selection via terminals during converter operation |
| Troubleshooting response | Switch the motor after the shutdown of frequency converter |
| Fault Name | Excessive Speed Deviation Fault |
| Display of Operation | Err42 |
| Troubleshooting | 1.Incorrect encoder parameter setting <br> 2.No parameter identification <br> 3. Detection parameter P9-69. P9-60 of excessive speed deviation not set correctly |
| Troubleshooting response | 1.Set the encoder parameters correctly 2.Perform motor parameter identification 3.Rational setting of the test parameters according to the actual situation |
| Fault Name | Motor Overspeed Fault |
| Display of Operation | Err43 |
| Troubleshooting | 1.Incorrect encoder parameter setting <br> 2.No parameter identification <br> 3.Motor overspeed detection parameter P9-69. P9-60 not set correctly |
| Troubleshooting response | 1.Set the encoder parameters correctly <br> 2.Perform motor parameter identification <br> 3.Rational setting of the test parameters according to the actual situation |
| Fault Name | Motor Over-temperature Fault |
| Display of Operation | Err45 |
| Troubleshooting | 1.Loosen of temperature sensor wiring 2.Excessive motor temperature |
| Troubleshooting response | 1.Testing and troubleshooting temperature sensor wiring <br> 2.Reduce the load frequency or take other cooling measures to cool the motor |
| Fault Name | Incorrect Initial Position |
| Display of Operation | Err51 |
| Troubleshooting | Motor parameters deviate too much from actual |
| Troubleshooting response | Re-check that the motor parameters are correct, focusing on whether the rated current setting is low |

## Chapter VI Maintenance and Care

### 6.1 Daily maintenance

In order to prevent the failures of frequency converter, ensure the normal operation of the equipment and extend the service life of the converter, it is necessary to carry out daily maintenance on the frequency converter. The contents of daily maintenance are as follows:

| Check items | Contents |
| :---: | :---: |
| Temperature / Humidity | Confirm that the ambient temperature is between $0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ and the humidity is <br> between 20 and $90 \%$ without condensation |
| Oil mist \& dust | Confirm that the converter is free of oil mist and dust, without condensation |
| Converter | Check the frequency converter for abnormal heating and vibration |
| Fan | Make sure the fan is running properly, without any debris jamming etc. |
| Input power supply | Confirm that the voltage and frequency of the input power supply are within the |
| permitted range |  |

### 6.2 Regular maintenance

In order to prevent converter failures and to ensure its high performance and stable operation over a long period of time, the user must check the converter regularly (within six months) ; especially for the frequency converter at sites with high oscillations, high dust, high temperatures, etc must be inspected half a month.
The checking contents are as follow:

| Check items | Contents | Troubleshooting methods |
| :---: | :---: | :---: |
| Screws of external <br> terminals | Whether the screws are loose | Tighten them |
| PCB | Dust and dirt on PCB board | Complete removal of debris with dry compressed <br> air |
| Fan | whether the accumulated time for <br> abnormal noise and vibration <br> exceeds 20,000 hours. | 1. Remove debris <br> 2. Replace the fan |
| Electrolytic Capacitor | Is it discolored and does it have an <br> unpleasant smell? | Replace the electrolytic capacitor |$\quad$| Dust and dirt |
| :---: |

### 6.3 Replacement of wearing parts of frequency converter

The fan and electrolytic capacitor in the converter are easily damaged parts, to ensure the long-term, safe, and trouble-free operation of converter, the wearing parts should be replaced regularly. The replacement time of wearing parts is as follows:

- Fan must be replaced after more than 20,000 hours of use
- Electrolytic capacitors: must be replaced after 30,000 to 40,000 hours of use


### 6.4 Warranty of frequency converter

Our company provides the SCMOD series converter with a 12 -month warranty service from the date of delivery (subject to the barcode on the body).

## Chapter VII Optional Accessories

### 7.1 Brake Assembly

When the equipment driven by the converter needs to be braked quickly or has a large amount of energy to be fed back, a braking unit is required to release the energy fed back to the DC bus. Generally speaking, the model up to 15 kW (including 15 kW ) has a built-in braking unit and is connected directly to a braking resistor; the model above 18.5 kW (including 18.5 KKW ) requires an external braking unit and resistor.
The selection of braking resistors for different power classes of inverters is shown as below:

| Converter power |  | Braking unit |  | Each braking unit needs to be equipped with a dynamic resistor |  |  | Braking torque (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Voltage | Max. capacity $\mathrm{KW}(\mathrm{HP})$ | $\begin{gathered} \text { Type } \\ \text { 70BR } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { Quantity } \\ \text { (unit) } \end{array}$ | Recommended resistance value | Single resistor specification | Quantity |  |
| Single- <br> phase <br> 220 V <br> Series | 0.5(0.7) | Built-in |  | 80W $200 \Omega$ | $80 \mathrm{~W} 200 \Omega$ | 1 | 100\% |
|  | 0.75(1.0) | Built-in |  | $80 \mathrm{~W} 200 \Omega$ | $80 \mathrm{~W} 200 \Omega$ | 1 |  |
|  | 1.5(2.0) | Built-in |  | 150W $100 \Omega$ | 150W $100 \Omega$ | 1 |  |
|  | 2.2(3.0) | Built-in |  | 200W $100 \Omega$ | 200W $100 \Omega$ | 1 |  |
|  | 4.0(5.0) | Built-in |  | $300 \mathrm{~W} 75 \Omega$ | 300W $75 \Omega$ | 1 |  |
| Threephase 380V Series | 0.75 (1.0) | Built-in |  | 80W $400 \Omega$ | 80W $400 \Omega$ | 1 | 100\% |
|  | 1.5(2.0) | Built-in |  | 120W $300 \Omega$ | 180W $300 \Omega$ | 1 |  |
|  | 2.2(3.0) | Built-in |  | 160W $250 \Omega$ | $250 \mathrm{~W} 250 \Omega$ | 1 |  |
|  | 4.0(5.0) | Built-in |  | 300W $150 \Omega$ | 400W $150 \Omega$ | 1 |  |
|  | 5.5(7.5) | Built-in |  | 400W $100 \Omega$ | 600W $100 \Omega$ | 1 |  |
|  | 7.5(10) | Built-in |  | 550W $75 \Omega$ | 800W $75 \Omega$ | 1 |  |
|  | 11(15) | Built-in |  | 1000W $68 \Omega$ | 1000W $68 \Omega$ | 1 |  |
|  | 15(20) | Built-in |  | 1500W $50 \Omega$ | 1500W $50 \Omega$ | 1 |  |
|  | 18.5(25) | 4030 | 1 | 2500W $35 \Omega$ | 2500W $35 \Omega$ | 1 |  |
|  | 22(30) | 4030 | 1 | 3000W $27.2 \Omega$ | 1200W $6.8 \Omega$ | 4 |  |
|  | 30(40) | 4045 | 1 | 5000W $17.5 \Omega$ | 2500W $35 \Omega$ | 2 |  |
|  | 37(50) | 4045 | 1 | $9600 \mathrm{~W} 16 \Omega$ | $1200 \mathrm{~W} 8 \Omega$ | 8 |  |
|  | 45(60) | 4045 | 1 | 9600W $13.6 \Omega$ | 1200W $6.8 \Omega$ | 8 |  |
|  | 55(75) | 4030 | 2 | $6000 \mathrm{~W} 20 \Omega$ | 1500W $5 \Omega$ | 4 |  |
|  | 75(100) | 4045 | 2 | $9600 \mathrm{~W} 15 \Omega$ | 1200W $7.5 \Omega$ | 8 |  |
|  | 93(150) | 4045 | 2 | 9600W $13.6 \Omega$ | 1200W $6.8 \Omega$ | 8 |  |
|  | 110(150) | 4045 | 3 | $9600 \mathrm{~W} 16 \Omega$ | $1200 \mathrm{~W} 8 \Omega$ | 8 |  |
|  | 132(175) | 4045 | 3 | 9600W $13.6 \Omega$ | 1200W $6.8 \Omega$ | 8 |  |
|  | 160(220) | 4045 | 4 | 9600W $13.6 \Omega$ | 1200W $6.8 \Omega$ | 8 |  |
|  | 220(300) | 4045 | 5 | 9600W $13.6 \Omega$ | 1200W $6.8 \Omega$ | 8 |  |
|  | 250(330) | 4045 | 6 | 9600W $13.6 \Omega$ | 1200W $6.8 \Omega$ | 8 |  |

## Wiring diagram for brake components:



### 7.2 Remote monitoring operation box

It's installed individually on the door panel or operator's console to observe the running parameters of the converter and to keep a track of the converter operation.
The installation dimensions are as follows:


## Chapter VIII Communication Protocol

The SCMOD series converters provide an RS232/RS485 communication interface and support the Modbus RTU Communication protocol. The communication parameters, such as slave number and data format, are set via the Pd group parameters.

### 8.1 RTU frame format:

| Frame header START | 3.5-character time |
| :---: | :---: |
| Slave address ADR | Communication address: $1 \sim 247$ |
| Command code CMD | 03: Read the slave parameters; 06: write the slave parameters |
| Data content DATA (N-1) | Contents: address of the function code parameter, number of function <br> code parameters, value of the function code parameter, etc. |
| Data content DATA (N-2) |  |
| $\ldots . .$. |  |
| Data content DATA0 | Detected value: CRC value. |
| CRCCHK High | 3.5-character time |
| CRCCHK Low |  |
| END |  |

### 8.2 Addresses of common communication parameters

### 8.2.1 Monitoring parameters

| Parameter Address | Parameter Description |
| :---: | :---: |
| 1000 (H) | * Communication setting value (-10000~10000) (Decimal) |
| 1001 | Running frequency |
| 1002 | Busbar voltage |
| 1003 | Output voltage |
| 1004 | Output current |
| 1004 | Output current |
| 1005 | Output power |
| 1006 | Output torque |
| 1007 | Running speed |
| 1008 | X Terminal input symbol |
| 1009 | Digital terminal output symbol |
| 100A | VI voltage |
| 100B | Cl voltage |
| 100C | Keypad potentiometer voltage |
| 100D | Counting value input |
| 100E | Length value input |
| 100F | Load speed |
| 1010 | PID setting |
| 1011 | PID feedback |
| 1012 | PLC Step |
| 1013 | Input pulse frequency, in unit of 0.01 kHz |
| 1014 | Feedback speed, in unit of 0.1 Hz |
| 1015 | Remaining running time |
| 1016 | VI pre-calibration voltage |
| 1017 | Cl pre-calibration voltage |
| 1018 | Keypad potentiometer pre-calibration voltage |
| 1019 | Line speed |
| 101A | Current power-on time |
| 101B | Current running time |
| 101C | Input pulse frequency, in unit of 1 Hz |
| 101D | Communication setting value |
| 101E | Actual feedback speed |
| 101F | Main frequency $X$ display |
| 1020 | Auxiliary frequency Y display |

Note:
The communication setting value is percentages of relative values, 10000 for $100.00 \%$ and -10000 for $-100.00 \%$. For frequency setting, the percentage is a percentage relative to Max. frequency (P0-10); for torque setting, the percentage is P2-10. A2-48 (the upper torque figure setting, corresponding to the first and second motors respectively).

### 8.2.2 Control commands of frequency converter (write only)

| Command Word Address | Command Functions |
| :---: | :---: |
| 2000 (H) | 0001: Forward running |
|  | 0002: Reversed running |
|  | 0003: Forward inching |
|  | 0004: Reversed inching |
|  | 0005: Stop freely |
|  | 0006: Slow down and stop |
|  | 0007: Fault reset |
| 2001 | BITO:A1-B1-C1 output control <br> BIT1: Reserve <br> BIT2: A-B-C output control <br> BIT3: Reserve <br> BIT4:MO2 Switching output control BIT5-BIT15: Reserve |
| 2002 | 0~7FFF means 0\% $100 \%$ : AM output |
| 2003 | 0~7FFF means 0\% $100 \%$ : FM output |
| 2004 | 0~7FFF means 0\% $100 \%$ : MO2 pulse output |

8.2.3 Frequency converter status (read only)

| Status Word Address | Status Word Meaning |
| :---: | :---: |
|  | 0001: Forward running |
|  | 0002: Reversed running |
|  | 0003: Stop |

### 8.2.4 Frequency converter fault (read-only)

| Fault Address | Fault information |
| :---: | :---: |
| $\begin{gathered} 8000(\mathrm{H}) \\ \text { (Converter Faults) } \end{gathered}$ | 0000: Faultless 0001: Reserve 0002: Accelerated overcurrent 0003: Deceleration overcurrent 0004: Constant speed overcurrent 0005: Accelerated overvoltage 0006: Deceleration overvoltage 0007: Constant velocity overvoltage 0008: Buffer resistor overload fault 0009: Undervoltage fault <br> 000A: Converter overload 000B: Motor overload 000C: Input open phase 000D: Output open phase <br> 000E: Module overheat 000F: External fault 0010: Communication abnormality 0011: Contactor abnormality 0012: Current detection fault 0013: Motor tuning fault 0014: Encoder/PG card fault <br> 0015: Parameter read/write exceptions 0016: Converter hardware fault <br> 0017: Motor short circuit to ground fault 0018: Reserve 0019: Reserve <br> 001A: Runtime reaches 001B: User defined fault 1 001C: User defined fault 2 001D: Power-up time reaches <br> 001E: Load dropping 001F:Loss of PID feedback at runtime 0028: Speed limit timeout fault <br> 0029: Fault in switching motor during operation 002A: Excessive speed deviation |
| $8001$ <br> (Communication faults) | 0000: Faultless <br> 0001: Wrong password 0002: Wrong command code 0003: CRC checksum error 0004: Invalid address 0005: Invalid parameter 0006: Invalid parameter change 0007: System is locked |


-Tel/Fax: 0086-400-8880997 / 0825-8556188
-Website: www.schorch-convert.com
-Headquarter address: Room 2706, Jinfeng 468 Greenland Center, Jinjiang District, Chengdu City, China. 610000

$\bullet$ Factory address: Intersection of Andong Avenue and Shunan South Road, Anju Economic Development Zone, Suining City, Sichuan Province, China. 629000

